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A B S T R A C T

A major source of uncertainty in civil engineering projects arises from the geological and geotechnical variability
at the project site. This paper presents an approach to quantify such uncertainty, and to rationally incorporate
them into estimates of cost contingency. Contrary to the conventional approaches that rely on individual expert's
opinion or data from past projects, the proposed approach allows site-specific assessments of the intrinsic
geotechnical variability through geostatistical techniques. Such uncertainty can be reduced through geotechnical
investigation, and spatial tessellation techniques are proposed to facilitate determination of the optimal locations
of new boreholes. Cost-effectiveness of the boreholes can be evaluated based on the corresponding reductions in
geotechnical uncertainty and their influence on the budget. The approach is illustrated using a hypothetical
excavation scenario, where the project costs are affected by uncertainty in the subsurface strata, particularly the
rockhead level across the site. Under the specific site conditions, a Pareto frontier is developed to reveal the
relationship between the number of boreholes to be drilled and potential savings in contingency budget.
Through this approach, the study promotes better utilization of geotechnical information and rational assess-
ments of project risks associated with their variability, which may lead to improved project planning and re-
source allocation.

1. Introduction

Uncertainty in geotechnical engineering is a well-known, yet in-
adequately understood topic in the civil engineering profession. Delay
and cost overrun of many large-scale infrastructure projects have been
attributed to ‘unforeseen’ and complex geological and geotechnical
conditions. According to a survey of 28 construction projects in the
United Kingdom [1], more than 40% of the geotechnical problems
encountered during construction arise from uncertainties related to the
subsurface strata and the geotechnical properties. To reduce such un-
certainties, geotechnical investigation (e.g., rock and soil sampling and
testing) can provide additional information about the ground condi-
tions at the site. However, there is currently no quantitative approach
to relate this to the level of uncertainty across the site, or to elucidate
how the project risks may be reduced through the additional informa-
tion. Consequently, practitioners often rely on their individual experi-
ence or intuition when planning the geotechnical investigation pro-
gramme. The qualitative nature of this practice makes it difficult to
assess the cost-effectiveness of the investigation, or its implications on
the overall budget and delivery time of the construction project. The
problem can be exacerbated in infrastructure mega-projects, where

delay in one part of the project often triggers cascading effects to the
entire development plan. From a management standpoint, a cost or
time contingency is usually included in the project budget or pro-
gramme, as a common approach to control the risks of delay and cost
overruns due to unforeseen conditions. In fact, the contingency budget
or the ‘float’ of a particular task should be decided according to the
level of uncertainty associated with the task. For excavation projects, it
is therefore beneficial to quantify the geotechnical uncertainty, which
then allows rational planning and apportioning of the risks.

Traditionally, cost contingency is incorporated as a simple percen-
tage addition onto the base (cost) estimate, considering specific project
features, past experience and historical data [2]. For large and complex
projects, more rational estimates may be obtained either through de-
terministic or probabilistic approaches [3]. Some of the common de-
terministic approaches include linear regression models, artificial
neural networks (ANN) for more complex problems, and Least Squares
Support Vector Machine (LS-SVM) in price variation modelling for
construction management. For example, Sonmez et al. [4] proposed a
linear regression model to predict the bidding contingency amount for
contractors, by focusing on the major influential factors of contingency
decisions identified from previous projects, while Thal et al. [5]
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developed a multiple linear regression model for similar purposes. Al-
though the regression method outperforms the practice of assigning an
arbitrary percentage, a linear relationship may not be able to best fit the
available historical data [6]. Therefore, ANN were utilized to perform
nonlinear regression for more complex problems. These include the
work by [7], who built a back propagation general regression neural
networks (GRNN) to determine the cost contingency and allocation
strategies at the preliminary stage. Lhee et al. [8] further proposed a
two-step ANN-based model adding contingency rate as an intermediate
output variable. Meanwhile, Cheng et al. [9] established a hybrid
system based on Least Squares Support Vector Machine (LS-SVM) for
modelling construction price variations, which can be used for decision
making in construction management. Although these previous studies
have illustrated the potentials of deterministic approaches, a few major
criticisms remain regarding their applications. These include the heavy
influence by subjectivity of individual experts, deficiency in accurately
quantifying the project risks, and the fact that some of these techniques
work like a ‘black-box’ [10, 11].

Probabilistic approaches were advocated to tackle these defi-
ciencies. For example, Khalafallah et al. [12] proposed the Bayesian
Belief Network to quantify project risk and uncertainty level, which
allows the determination of the appropriate contingency percentage for
construction projects. This approach was further developed by Kim
et al. [13] to assess the probability of construction project delays based
on case studies in developing countries. Meanwhile, other researchers
adopted the Monte Carlo Simulation (MCS) to quantify cost con-
tingency at different risk levels [14]. Since the risk factors in con-
struction projects often contain both ‘random’ and ‘fuzzy’ vari-
ables [15], a Fuzzy MCS framework was established by Sadeghi
et al. [16] to evaluate both components in the estimation of con-
tingency range.

These previous approaches mainly rely on historical data or quali-
tative experts' opinion and experience [17], with little discussion on the
intrinsic source of uncertainty. This paper attempts to quantify a major
source of uncertainty in excavation projects, arising from the geo-
technical and geological variability at the project site. An automated
strategy is proposed to quantify geotechnical uncertainty, and to eval-
uate its changes with additional boreholes in the project site. It ac-
counts for site-specific geologic features based on the available existing
information, which may include irregularly-spaced boreholes revealing
variations of subsurface strata in different directions. The quantitative
approach enables optimization to be performed to determine the
number and locations of sampling points that lead to the most cost-
effective investigation programme, with respect to the impacts on time
and costs of the tasks. The proposed approach will be demonstrated
through the scenario of an excavation project, where the major un-
certainty arises from the variations of rockhead level across the site.
Such variations heavily influence the quantity of rock materials to be
excavated, and hence the planning of project budget and delivery time.

2. Methodology

This study utilizes the geostatistical approach discussed by Liu
et al. [18] and Liu and Leung [19] to quantify the geotechnical varia-
bility associated with subsurface strata. Meanwhile, spatial tessellation
techniques are adopted for the derivation of optimal geotechnical
sampling strategies. Their cost-effectiveness can be evaluated through
the reductions of uncertainty, and the subsequent implications on the
budget and time of the excavation project. The three individual com-
ponents of the proposed approach are described in the following sec-
tions.

2.1. Quantification of geotechnical variability

Liu et al. [18] and Liu and Leung [19] presented the details and
verification of an integrated framework established to characterize the
spatial variability of geological profiles and geotechnical properties.
This will be described briefly herein as it forms the basis of the sampling
strategy proposed in this study. In general, the spatial variations of the
subsurface strata (z) can be represented by a linear mixed model con-
sisting of a large-scale trend (Xβ), and the residual effects (ε) that de-
scribe the deviations of the actual values from the trend (Fig. 1):

= +z β εX (1)

where X is a matrix containing information of the spatial coordinates of
sampled points, and β represents the trend coefficients. ε is often ob-
served to be spatially correlated, with greater variations between
components εi and εj associated with larger separation distances be-
tween locations i and j. Accordingly, the variance of ε can be re-
presented by:
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where I is the identity matrix; σn
2 are the random natural effects (white

noise effects) which are independent of separation distances; σe
2 are the

smooth scale variations, or the component of total variance that cor-
relate with separation distance, and such autocorrelation is described
by the matrix R. s is referred to as the spatial dependence, and re-
presents the proportion of σe

2 within the total variance. Individual
components of R (Rij) describe the correlations between εi and εj, and
the relationship between R and separation distance (hij) can be mod-
elled by different mathematical functions, such as the exponential,
Gaussian (squared exponential), or spherical function, all of which in-
volve a parameter θ that defines the range of correlation. Alternatively,
the scale of fluctuation (δ) is another parameter used to define the
extent of the correlation [20], and is often taken as the separation
distance where the autocorrelation R drops to the value of 0.05. The
parameters θ and δ are related to each other according to the adopted
correlation function. For example, ≈δ π θ for the Gaussian function.

Site-specific characterization of the spatial features mainly involves
determination of the trend β, together with correlation parameters s

Fig. 1. (a) Trend and residuals of spatial variables (after DeGroot and Baecher 1993); and (b) Autocorrelation of residuals.
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