
Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

IFCdiff: A content-based automatic comparison approach for IFC files

Xin Shia, Yu-Shen Liua,b,c,*, Ge Gaoa, Ming Gua, Haijiang Lid

a School of Software, Tsinghua University, Beijing 100084, China
b Key Laboratory for Information System Security, Ministry of Education of China,China
c Tsinghua National Laboratory for Information Science and Technology (TNList), China
d BRE Institute of Sustainable Engineering, Engineering School, Cardiff University, UK

A R T I C L E I N F O

Keywords:
Building Information Modeling (BIM)
Industry Foundation Classes (IFC)
IFC comparison
Change detection
Similarity and difference

A B S T R A C T

With the growth in popularity of the IFC (Industry Foundation Classes) format used in construction industry, it
often requires effective methods of IFC comparison to keep track of important changes during the lifecycle of
construction projects. However, most IFC comparisons are based on a visual inspection, a manual count and a
check of selective attributes. Although a few techniques about automatic IFC comparisons have been developed
recently, they are usually time-consuming, and are sensitive to the GUID change or redundant instances in IFC
files. To address these issues, we propose a content-based automatic comparison approach, named IFCdiff, for
detecting differences between two IFC files. The proposed approach starts with a comprehensive analysis of the
structure and content of each IFC file, and then constructs its hierarchical structure along with eliminating
redundant instances. Next, the two hierarchical structures are compared with each other for detecting changes in
an iterative bottom-up procedure. Our approach fully considers the content of IFC files without the need of
flattening instances in IFC files. In contrast with previous methods, our approach can greatly reduce the com-
putational time and space, and the comparison result is not sensitive to redundant instances in IFC files. Finally,
we demonstrate a potential application to incremental backup of IFC files. The software can be found at: http://
cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/.

1. Introduction

During the last decade, Building Information Modeling (BIM) has
received a considerable amount of attention in the domain of
Architecture, Engineering and Construction (AEC) to support lifecycle
data sharing [1]. As an open and neutral data format specification for
BIM, Industry Foundation Classes (IFC) [2] plays a crucial role to fa-
cilitate interoperability between various software platforms. The IFC
data format has been widely supported by the market-leading BIM
software vendors. Many recent studies also demonstrate the IFC viabi-
lity in various applications, such as evaluation of design solutions [3],
virtual construction [4], construction management [5], model
checking [6,7], path planning [8], file optimization [9], semantic an-
notation [10] and information retrieval [11,12].

With the growth in popularity of the IFC format used in construction
industry, it often requires an effective IFC comparison method to keep
track of important changes during the lifecycle of construction projects.
The IFC comparison aims to analyze and identify the differences and
similarities between two IFC files. It is a fundamental problem which

may arise in many BIM-based applications, such as collaborative
building design [13], incremental backup of files, construction project
management [5], product data exchange [14–16], conformance
checking [15], handover for operation and maintenance [15]. Previous
IFC comparisons are usually based on a visual inspection, a manual
count and a check of selective attributes [15,17-19]. However, due to
the large file sizes, the complex inheritance and referencing relation-
ships of IFC files, such a way of manual inspection is often time-con-
suming and error-prone; furthermore, it can only report a partial and
illustrative view of the compared files [14]. Although a few recent
studies have been developed for automatic IFC comparison [14,18,20],
their methods are usually very time-consuming, and are sensitive to the
globally unique identifiers (GUID) change [18,20] or redundant in-
stances [14] within IFC files.

To address these issues, we propose a content-based automatic IFC
comparison approach, named IFCdiff, for tracking differences or de-
tecting changes between two IFC files. Our approach starts with a
comprehensive analysis of structure and content of each IFC file, and
then constructs its hierarchical structure along with eliminating

https://doi.org/10.1016/j.autcon.2017.10.013
Received 29 June 2016; Received in revised form 17 August 2017; Accepted 17 October 2017

* Corresponding author at: School of Software, Tsinghua University, Beijing 100084, China.
E-mail addresses: coolstone712@126.com (X. Shi), liuyushen@tsinghua.edu.cn (Y.-S. Liu), gg07@mails.tsinghua.edu.cn (G. Gao), guming@tsinghua.edu.cn (M. Gu),

lih@Cardiff.ac.uk (H. Li).
URL: http://cgcad.thss.tsinghua.edu.cn/liuyushen/ (Y.-S. Liu).

Automation in Construction 86 (2018) 53–68

Available online 10 November 2017
0926-5805/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2017.10.013
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/
https://doi.org/10.1016/j.autcon.2017.10.013
mailto:coolstone712@126.com
mailto:liuyushen@tsinghua.edu.cn
mailto:gg07@mails.tsinghua.edu.cn
mailto:guming@tsinghua.edu.cn
mailto:lih@Cardiff.ac.uk
http://cgcad.thss.tsinghua.edu.cn/liuyushen/
https://doi.org/10.1016/j.autcon.2017.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2017.10.013&domain=pdf


redundant instances at each level. Next, the two hierarchical structures
are compared with each other for detecting changes in an iterative
bottom-up procedure. Our approach fully takes into account the content
of IFC files and makes good use of the hierarchical structure of IFC files.
First, our approach can significantly reduce the computational time and
space. Furthermore, the comparison result using our method is not
sensitive to redundant instances within IFC files. In addition, we also
demonstrate a potential application of our approach to incremental
backup of IFC files.

The paper is organized as follows. Section 2 reviews the related
work and summarizes the existing problems. Section 3 introduces some
basic concepts and terms of IFC files. Section 4 gives a detailed de-
scription of our approach. Section 5 demonstrates the experimental
results and a potential application to incremental backup of IFC files.
Finally, Section 6 concludes this paper, summarizes our contributions
and discusses some future work.

2. Related work

Early studies of IFC comparison mainly conducted a visual inspec-
tion of models and a check of selective attributes in the original and
exchange models [15,17-19]. The visual inspection can be done with
various IFC viewers that are available, while the attribute analysis is
usually a manual check for building elements. However, only using a
visual and manual way for comparing IFC files is inaccurate and in-
complete due to the complex referencing and inheritance structure of
IFC files [14]. The manual way is useful for only small and simple IFC
models, whereas it is not practical for large and complex models in the
actual construction projects. Consequently, there is an urgent need for
developing automatic IFC comparison tools in the scenario of IFC-based
data management.

2.1. Plain text comparison

There are various approaches in use for performing automatic
comparison of IFC files. An IFC file is a plain text (ASCII) format with
the extension “*.ifc”, which is specified by IFC and ISO 10303-21 [21]
(also known as “STEP physical file”). Therefore, a direct approach is to
use plain text comparison tools for directly comparing two IFC files,
regardless of information content of models. Some widely used text
comparison tools [22], such as diff, DiffMerge, cmp, FileMerge, SVN, CVS
and BCompare, can be conducted for this purpose. These tools usually
compute the longest common subsequence and highlight the differences
between textual files. However, pure text comparison does not consider
the specific data organization and representation of an IFC file.
Therefore, the traditional text comparison tools are not suitable for IFC
file comparison.

2.2. GUID-based IFC comparison

Another kind of approaches is based on the globally unique iden-
tifier (GUID) [18,20] which is an unique identifier for object instances
across applications and systems. The general strategy of GUID-based
comparison is as follows. If there is an instance in one IFC file which has
the same GUID as an instance in another IFC file, they can be con-
sidered as the same instance; otherwise, they are considered to be dif-
ferent instances even with the same attributes of the entity or of its
reference entities. The GUID-based comparison is widely adopted by
many commercial BIM platforms such as Autodesk Revit, Navisworks and
Graphisoft ArchiCAD. Some research articles [14,20] also discussed how
to use the GUIDs for measuring the differences between IFC files.

However, in the IFC specification, only the entities inherited from
IfcRoot have GUIDs in their attributes, while many other entities (e.g.
IfcPropertySingleValue) not inherited from IfcRoot have no
GUID [14,20]. In addition, the GUIDs of instances are often changed
during the data exchange between different systems even without any

modification to the model itself. Therefore, the GUID-based comparison
is not a reliable approach to distinguish two IFC files even if it is quite
simple and fast for comparison.

2.3. Graph-based IFC comparison

A third type of approaches was proposed by Arthaud and
Lombardo [13] in the co-design scenario, which compares two oriented
graphs generated by two IFC files. From this, it is possible to track the
differences between two IFC models. However, the matching process of
nodes between two oriented graphs still complies with the GUID com-
parison, where the instances without GUIDs are ignored in the com-
parison process. More recently, Oraskari et al. [23] presented RDF-
based signature algorithms for computing differences of IFC models.
They convert each IFC model into an RDF graph, in which anonymous
nodes (i.e. those instances that do not have any GUID) are assigned
GUIDs using a novel signature-based algorithm. As a result, compar-
isons of IFC models are reduced to graph matching. However, node
comparison in the last step is still based on GUID comparison.

It is noteworthy that such graph-based IFC comparisons are non-
trivial and time-consuming for large models. Furthermore, they do not
handle duplicate data instances in IFC files. In practice, the IFC files
generated by various software platforms often include a large number
of duplicate data instances [9,14], which should be processed in the
procedure of IFC comparison. We will discuss this issue in Section 2.5.2
in detail.

2.4. Flattening-based IFC comparison

The fourth type of approaches, presented by Lee et al. [14], utilizes
a recursive strategy to flatten the instances in two IFC files, and then
compares the flattened data instances instead of the original ones. The
“flattening” process is to replace all the reference numbers with their
actual values in each IFC file, which makes an IFC file into a structure
that does not include any referencing or inheritance structure [14]. This
overcomes the difference of reference numbers included in attribute
values when comparing pairs of data instances. As a result, IFC com-
parison is simplified to pure string comparison after flattening.

This flattening-based method firstly reads two IFC files and parses
data into instance name, entity name, and attribute values before
comparison. In the following example of one data instance, #90 is the
instance name, IFCSLAB is the entity name, and the remaining in-
formation within parentheses is the attribute values.

Since different BIM modeling systems might export IFC files in
various ways, the instance names and reference numbers might be
different. To overcome this difference in referencing mechanisms, the
files should be “flattened” first, i.e., making files in a structure that does
not include any referencing or inheritance structure by replacing the
reference identifier numbers with their actual attribute values. The
following shows the flattened data instance of #90.

Such a flattening process overcomes the difference of reference
numbers included in attribute values when comparing pairs of data
instances. As a result, IFC comparison is simplified to pure string
comparison after flattening.

X. Shi et al. Automation in Construction 86 (2018) 53–68

54



Download English Version:

https://daneshyari.com/en/article/6695979

Download Persian Version:

https://daneshyari.com/article/6695979

Daneshyari.com

https://daneshyari.com/en/article/6695979
https://daneshyari.com/article/6695979
https://daneshyari.com

