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A B S T R A C T

To win a project contract through competitive bidding, contractors submit a bid price that is determined by
putting a markup on the estimated project cost. The success of the bid is therefore heavily dependent on the
accuracy of that estimate, meaning that sufficient resources should be allocated to the estimation process. This
paper develops a novel optimization model for simultaneously determining the bid markup and the resources
that should be allocated to cost estimation. We begin by deriving optimality conditions for this simultaneous
optimization model and illustrating them with numerical examples, for which purpose only we assume a single
competitor and uniformly distributed estimation errors. To analyze a more realistic situation, we then examine
computational solutions to our model. Through these two approaches, we investigate the effects of the bid-
markup decision and resource allocation on the contractor's expected profit, and we highlight the significance in
competitive bidding of the markup and allocation.

1. Introduction

1.1. Background

Competitive bidding is widely used to choose contractors. A client
who needs a contractor to carry out a certain project invites potential
contractors to submit bid prices that are not revealed to competing
contractors. The lowest bid tends to determine the winning contractor,
who is then paid the bid price and executes the project as specified by
the client. In this process, the contractor's profit is highly dependent on
its bidding strategy.

Because the contractor determines its bid price by putting a markup
on its estimated project cost, the bid price is markedly affected by the
accuracy of that estimation. Nevertheless, it is very difficult to estimate
the cost of a project accurately, especially for construction projects.
Indeed, the average growth in the costs of very large civilian projects
from the beginning of detailed engineering has been measured as
88% [28]. For transport infrastructure projects, the average cost esca-
lation has been assessed as 28%; this figure appears to be valid globally
according to data from 20 countries [13]. Consequently, traditional
cost–benefit analysis will give misleading results because of such in-
accurate cost estimates. To make matters worse, the risks due to

misleading cost estimates are typically either underplayed or ignored
altogether in infrastructure decision making [13].

The motivation behind this research is to highlight the significance
in competitive bidding of the bid-markup decision and the resources
allocated to cost estimation, which we do through effective use of
mathematical modeling and analysis. By making certain assumptions,
this approach allows us to have universal consequences that are in-
dependent of project type and contractor. Moreover, appropriate
markup and resource allocation can be determined based on compu-
tational solutions to the mathematical model, while simultaneously
allowing the quantitative impact of those decisions on expected con-
tractor profit to be clarified. This marks a positive contrast with various
existing methods of qualitative analysis. As such, our mathematical
approach has the potential to play a critical role in the decision-making
process of contractors.

1.2. Literature review

Since the seminal work by Friedman [14], a considerable number of
studies have pursued effective models of the determination of bid
markups (or bid prices) [11,23,30,33]. These models are divided into
three main categories [27]: statistical models, artificial-intelligence-
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based models, and multi-criteria utility models. Statistical models de-
termine the optimal markup according to the statistical bidding beha-
vior of each competitor [24,29,34]. Recently, an entropy metric [6] and
Monte Carlo simulation [18] were used effectively in such statistical
models. Artificial-intelligence-based models estimate an appropriate
markup by using case-based reasoning [8,9] and artificial neural net-
works [17,25,26]. Multi-criteria utility models include many practical
factors in the bid-markup estimation [3,4,7,10,38]. However, such
models do not deal with the allocation of resources for cost estimation.

Project resource/budget allocation is a subject of active re-
search [1,12,15,16,31]. However, to the best of our knowledge, only
two studies have addressed the problem of allocating resources for es-
timating project costs in competitive bidding. Ishii et al. [21] im-
plemented a two-step heuristic algorithm that involves allocating re-
sources preferentially to estimate the cost of a profit-making project and
then determining an appropriate bid price. Takano et al. [35] built a
multi-period resource allocation model for cost estimation in a se-
quential competitive bidding situation. Nevertheless, it is noteworthy
that both the aforementioned studies consider resource allocation se-
parately from the bid-markup decision. No previous study on compe-
titive bidding has investigated the interaction between the bid-markup
decision and the allocation of resources for cost estimation.

Jackson [22] conducted a questionnaire survey that revealed that
more complete design information (e.g., about existing site conditions
and design definitions) leads to more accurate cost estimates. The
survey results also highlighted the importance of a qualified and ex-
perienced design/construction team. Moreover, the accuracy of a cost
estimate has been shown to be positively correlated with the number
of man-hours (MHs) spent making the estimate [19,36], and there is a
clear relationship between the accuracy of the estimate and the
amount of preparation [5,37]. These studies indicate that cost can be
estimated more accurately by increasing the amount of resources al-
located to its estimation. An appropriate markup should depend on the
accuracy of the contractor's cost estimate [24,29,34]. As a result, in
order for contractors to improve their profits, it is essential to de-
termine the bid markup and the resources allocated to cost estimation
simultaneously.

1.3. Our approach

The purpose of this paper is to devise a novel optimization model for
simultaneously determining the bid markup and the resources allocated
to cost estimation. Specifically, we revise the model developed by King
and Mercer [24] so that it incorporates a relationship between the ac-
curacy of the cost estimate and the amount of resources invested in
making the estimate.

We adopt two approaches to our simultaneous optimization model.
The first approach is to derive optimality conditions for our model. For
that purpose alone, we assume that only one competitor participates in
the competitive bidding and that the estimation errors are uniformly
distributed. After differentiating our model partially, we obtain its op-
timality conditions based on those assumptions and illustrate the con-
ditions with numerical examples.

The second approach is to examine computational solutions to our
simultaneous optimization model. In contrast to the first approach, this
one requires no strong assumptions. To analyze a realistic situation, this
approach deals with multiple competitors and estimation errors that
follow triangular distributions. We use the computational solutions to
examine the contractor's expected profit closely with respect to the bid
markup and resource allocation. We also evaluate the sensitivity of the
solutions in relation to the bidding behavior of the competitors.

The remainder of this paper is organized as follows. Section 2 pre-
sents our simultaneous optimization model for determining the bid
markup and the resources allocated to cost estimation. Section 3 shows

analytical results based on the aforementioned first approach, and
Section 4 reports computational results based on the second approach.
Section 5 concludes the paper with a brief summary of our work and a
discussion of future research directions.

2. Competitive bidding models

This section begins by describing the competitive bidding model
formulated by King and Mercer [24] and then describes our simulta-
neous optimization model.

2.1. King–Mercer model

To win a project contract through competitive bidding, a contractor
begins by estimating the cost of completing the project. Because that
estimated cost is subject to unavoidable error, it is reasonable to treat it
as a random variable. Therefore, we denote the estimated cost as (1+e)
C, where C is the true project cost and e is a random estimation error.
The contractor determines its bid price by putting a markup m on the
estimated cost. Accordingly, the bid price is given as

≔ + +B m e m e C( , ) (1 ) (1 ) . (1)

Let P(b) be the probability of winning the contract when the bid
price is b. If the contractor wins the contract, the eventual profit will be
the difference between the bid price and the true project cost, that is,
B(m, e)−C. Consequently, King and Mercer [24] formulated the con-
tractor's expected profit as

∫≔ −R m B m e C P B m e ϕ e e( ) ( ( , ) ) ( ( , )) ( ) d , (2)

where ϕ(e) is the probability density function (PDF) of the estimation
error e.

If the estimated cost contains no estimation error (i.e., e=0), it
follows that B(m, e)=(1+m) C and therefore that contractor's ex-
pected profit is

= +R m m C P m C( ) ((1 ) ).

As pointed out by King and Mercer [24], this model is equivalent to
Friedman's well-known model [14]. Hence, we see that Friedman's
model ignores the effect of an inaccurate cost estimate on the con-
tractor's expected profit.

2.2. Simultaneous optimization model

In the King–Mercer model (2), the probability distribution of the
estimation error is fixed. However, as we mentioned in Section 1, the
accuracy of the estimated cost can be controlled by adjusting the
amount of resources used for cost estimation. Thus, we assume that the
variation of estimation error depends on the amount of resources used
for that estimation. More precisely, the PDF of the estimation error is
defined as ϕ(e ∣ w), where w is the amount of resources used to estimate
the cost. This definition implies that the estimation-error variance can
be decreased by allocating more resources to cost estimation.

Following previous studies [5,37], we represent the amount w of
resources as a percentage of the project cost C. Accordingly, for the
example of C=100 and w=0.5%, the estimation cost is calculated as
C w=100×0.005=0.5. Our simultaneous optimization model de-
termines the decision variables m and w simultaneously in such a way
that the expected profit is maximized. Consequently, our model is posed
as follows:

∫≔ − ∣ −R m w B m e C P B m e ϕ e w e C wmaximize ( , ) ( ( , ) ) ( ( , )) ( ) d .

(3)

For the sake of completeness, we define the winning probability
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