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The dynamics of a thermally driven vapour film around a solid sphere has been investigated here
with both the sphere and the annular film surrounded by a large water pool. Integral models based
on constant and variable vapour-phase densities have been developed here for studying a spherico-
symmetric phase change problem for two immiscible phases, vapour and liquid around a hot sphere.
Governing equations for both liquid and vapour phases are converted into a set of non-linear ODEs.
Effects of distinct density on interface condition and density variation of vapour phase are taken into
account both in energy equation of vapour phase and also in interfacial mass and energy balance. The
present models have been validated with available analytical, incompressible Volume of Fluid (VOF) and
experimental results of growth and collapse of either bubble or vapour film. A simple model, based on
scale analysis, was evolved that successfully captured the non-monotonic growth of the film, as observed
by the more detailed models under certain degree of liquid subcooling. In addition, the case of very small
thermal boundary layer in the liquid side has been successfully studied for which the VOF model required
very fine grid. It has been observed that the effect of density variation in the integral model results in
marginally higher film growth at higher temperature. However, the effect of radiation on the film growth
was found to be quite substantial. The integral model not only incorporates the effects of vapour-phase
temperature variation and radiation exchange of heat but also is computationally several-fold efficient
with respect to the VOF model.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

Two immiscible phases separated by an interface are present in
many engineering problems involving phase change. If the phase
interface between the liquid and its vapour is associated with
sharp temperature gradient, evaporation and transport of mass
take place across the interface causing it to move. Plesset and
Zwick [1] investigated the inertia-controlled spherico-symmetric
dynamics of a vapour bubble in a pool of water. Their prediction
is reasonable during the initial period, if the liquid superheat is
high or the system pressure is low. A perturbation analysis of the
energy equation in presence of a thermal boundary layer in the liq-
uid side revealed that towards the terminal phase the dynamics is
thermally maintained. Mikic et al. [2] obtained a unified expression
of the radius of a saturated vapour bubble combining the results
of simple scale analyses for both the inertial and thermally con-
trolled regimes. Their prediction exhibited good agreement with
those of Dalle Donne and Ferranti [3], except for very small liquid
superheats.
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Prosperetti and Plesset [4] extended the solution of Mikic et al.
[2] by introducing scaling variables to describe growth over a wide
range of superheats. Lee and Merte [5] and Robinson and Judd [6]
carried out detailed numerical analysis of spherico-symmetric bub-
ble growth in superheated liquid. Naude and Mendez [7] numeri-
cally analysed the collapse of vapour bubble in subcooled liquid.
Riznic et al. [8] assumed spherico-symmetry in order to carry out
an integral analysis associated with a vapour bubble for its collapse
in a subcooled liquid pool and growth in a superheated liquid pool.
While Prosperetti and Plesset [4] and Robinson and Judd [6] in-
cluded the inertial effect on thermal growth in their scale analysis,
Naude and Mendez [7] and Riznic et al. [8] neglected the effect
of liquid momentum to lay emphasis only on thermally driven
growth and collapse. Avdeev and Zudin [9] extended the regime of
applicability of the solution by Mikic et al. [2] by incorporating the
effects of heat inflow and inertial reaction of the liquid to bubble
expansion in the energy transport and Rayleigh equations for the
bubble. Their approximate analytical solution captured the features
of certain experimental findings for the first time. The solution ex-
hibited smooth transition from one parametric regime to another
along with asymptotic approaches to the limiting solutions.

Closed form solutions for the thermally induced dynamics have
been obtained by neglecting the density difference between the
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Nomenclature

a2 time varying constant
C p specific heat of fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
J evaporative mass flux across interface . . . . . . . . kg/m2 s
Ja Jakob number, Ja = ρlC p |(Ts − T∞)|/ρvs L, dimension-

less
L latent heat of phase change . . . . . . . . . . . . . . . . . . . . . . . J/kg
R interface radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R0 initial interface radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R g gas constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
Rm sphere/melt radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ṙ interface velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
Ste Stefan number, Ste = C p(Tm − Ts)/L, dimensionless
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Ts saturation temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T∞ far liquid temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
h enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

qrad radiation heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

R radial co-ordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

T time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u transformed variable T.r . . . . . . . . . . . . . . . . . . . . . . . . . . . K m

Greek letters

v velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

λ thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K
α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
δ liquid-side thermal boundary layer thickness . . . . . . . m
η (r − Rm)/(R − Rm), dimensionless
ε emissivity, dimensionless
γ surface tension co-efficient . . . . . . . . . . . . . . . . . . . . . . . N/m
σ Stefan–Boltzmann constant . . . . . . . . . . . . . . . . . . W/m2 K4

Subscripts

l liquid phase
v vapour phase
m melt (sphere)
s saturation condition

phases for situations where a particular phase remains at satu-
ration condition corresponding to the system pressure. These ap-
proximations lead to analytical solution in standard simple geome-
tries that are known as solution to Stefan problem [10]. Application
of Stefan problem is mainly pertinent to phase change in material
storage device, where the interface movement arises from either
melting or solidification of a particular phase. Caldwell and Kwan
[11] solved the outward solidification problem for different geome-
tries by perturbation methods.

If the phases are not saturated and, in addition, the differ-
ence in densities between two phases is considered, the problem
differs from the Stefan-like situation. The interface boundary con-
dition calls for the solution of energy equation in both phases
with the bulk-phase motion activated by the motion of interface.
In Cartesian geometry Carslaw and Jaeger [12] analysed the effect
of difference in densities, with one phase at saturation tempera-
ture. For the validation of their code, both Welch and Wilson [13]
and Esmaeeli and Tryggvasson [14] used the similarity solution
for the outward movement of a planar liquid–vapour interface. In
these formulations, the effect of distinct densities is crucial and
convection of energy in the superheated bulk liquid is explicitly
accounted for. However, the vapour phase was considered as satu-
rated.

Another situation demands attention when the vapour film is
between a molten metal in the interior and liquid at the exte-
rior. Though such dynamic studies are of interest for the prediction
of rapid collapse of a vapour film during molten fuel-coolant-
interaction [15,16] and a number of other technical applications
[15], these remain limited till date. Bejan et al. [17] and Dan et
al. [18] investigated the growth of a vapour film around a molten
metal drop immersed in a saturated liquid. They considered radia-
tive heat transfer between the metal drop and the water, consid-
ering the vapour layer to be non-participating. In addition, they
considered the convective heat transfer due to the radial veloc-
ity field induced by temporal and spatial variation of vapour phase
density. However, this convective effect was not considered in their
estimation of evaporation rate through mass and energy balance at
the interface. Ghosh et al. [19] adopted a generalised incompress-
ible Volume of Fluid (VOF) based methodology for prediction of
collapse and growth of a thin vapour film layer formed around a
hot sphere immersed in a large liquid pool.

In the present work, an ODE-based spherico-symmetric approx-
imate integral model has been developed that can predict the col-
lapse and growth of a thin layer of a vapour film formed around
a hot sphere immersed in a large liquid pool. The VOF-based
methodology [19], developed earlier for a similar configuration is
computationally intensive and is difficult to extend to multiple
drops in a real system. Our present model can capture the case
of distinct but constant density for each phase. An interesting pre-
diction of initial decrease of film size followed by growth from the
VOF-based investigation has been used to validate the present for-
mulation, in absence of any experimental result. A scale analysis
has been performed to predict the duration of the initial decay and
compared with the prediction of the integral analysis. For a rigor-
ous validation of the integral formulation, a few other problems
have also been considered for which either of analytical, experi-
mental and other numerical results are available.

In contrast to the VOF study [19], the integral study brings out
the additional effects of the density variation and consequent ve-
locity field in the vapour phase. Also following Bejan et al. [17], the
contribution of radiation heat flux from the hot sphere to steam–
water interface has been incorporated, assuming the vapour film
to be non-participating. In addition, the effect of radial velocity
field induced by density variation in the vapour phase has been
included in the equation for mass and energy balance at the inter-
face that yields the expression for evaporation rate. The developed
model has been validated against some of the available analyti-
cal and numerical solution for moving boundaries with one of the
phases at saturated condition. Studies have been carried out next
considering none of the phases as saturated. A detailed parametric
study of the dynamics of film around the hot sphere in a subcooled
liquid has finally been investigated.

2. Mathematical model

In this section the system of equations have been derived using
mass and energy conservation principles, the liquid–vapour inter-
face condition and boundary conditions for the bulk liquid phase
of infinite expanse and the vapour phase of the limited expanse.
In the ensuing derivation, the liquid phase has been considered
incompressible along with spherico-symmetric assumption for all
primary variables. Two alternative formulations have been devel-
oped, one assuming constant density for the vapour phase and the
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