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A B S T R A C T

Once a biochemical pollutant is deliberately released into a ventilation system, the source information including
the releasing time and location need to be determined promptly and accurately. Successful inversion algorithms
to identify airborne contaminant source within enclosed spaces were deeply developed by previous studies. Such
mathematical algorithms inversely simulate airflow and concentration field with numerous intricate inverse
matrixes and spend plenty of time in the simulation process. However, tracking airborne pollutant sources within
a ventilation system has a higher requirement on computation time due to the rapid spread of contaminants in
high-speed airflow, which imposes a great challenge on model abstraction and method selection. This paper
mainly focuses on a specific source identification scenario: characterizing an instantaneous pollutant source
within a ventilation system by employing a probability-based inverse model. The mathematical model and the
solving process of both forward propagation and backward identification of the source are investigated and
proposed. To verify the feasibility of the forward model and to validate the applicability of the proposed inverse
modeling, a concentration-measured experiment was conducted in a real-built ventilation system. The measured
concentrations are used as model inputs to calculate the unconditional and the conditional backward time
probability density function (PDF). Then, the impact of sensor errors, sensor number and the change of the
operating status of the ventilation system on the results of source identification are discussed. Finally, the basis
and limitations of this work are extensively commented.

1. Introduction

In recent years, terrorists started to use lethal biochemical weapons
to attack public buildings and crowded places, which was challenging
the safety of our society [1–3]. In the latest case, the central air con-
ditioning system within the Hamburg Airport was chosen as the de-
livery system for an undefined gas, which caused dozens of people had
cough, allergy and other stress responses. In the early events, the nerve
agent Sarin was intentionally released into the Tokyo subway in 1995,
which killed 12 people and severely injured another 50 victims [4].
Afterwards, terrorists planned to use Sarin gas to assault the European
Parliament and kill all 625 parliamentarians. Fortunately, this incident
was foiled. In 2001, some anthrax spores letters were transmitted to
several office buildings across the United States, which murdered 5
people and infected more than 20 [5,6]. Such terrorist attacks or plans
have highlighted the exposure risk of civilians to biochemical pollutants
in buildings. In the case of deliberate release of biochemical pollutant, it
is crucial to characterize the source location and releasing time
promptly and accurately. Compared with the forward pollutant

dispersion process based on known source terms and air flow fields
within built environments, source identification is backward process.
And due to the discrete distribution of limited sensor data and the ill-
posed matrix in solving process, the inverse solution of the source term
is usually nonexistent [7–11]. However, the regularization method [12]
can deal with the ill-posed matrix and stabilize the solution in inver-
sion, making the source term can be mathematically approximated
[13–15].

At present, there have been several original studies about the in-
verse modeling of source identification in the field of building en-
vironment. The inversion methods introduced in their works can be
mathematically divided into three types: the forward matching method,
the backward solving method and the adjoint probabilistic method
[16–18].

The forward matching method runs numerous forward simulations
to trial all possible sources and searches for the source term that mat-
ches the monitored concentration best. Sohn et al. [19,20] integrated
the concentration measurements from multiple sensors by Bayesian
statistics and calculated the optimum estimation of source information
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by converting the concentration match degree into source probability.
The result showed that the estimate method matched the source term
well but depended on amount and quality of sensor data and sensor
network design. A similar approach was introduced for the optimal
design of sensor systems [21–25]. Since the source estimate process
regarded the sensor data as model inputs, it was feasible to identify the
optimal sensor network and the source term as a whole [20,26]. Cai
et al. [26,27] presented an analytical model for rapid identifying re-
leasing locations and emission rates of multiple indoor sources using
single or limited number of ideal sensors. Such model combined linear
programming model with analytical form of indoor contaminant dis-
persion to cover a large number of possible releasing scenarios. How-
ever, since the pollutant releasing in a building is a random process,
storing all possible releasing scenarios in advance to find out the global
optimum is sometimes unaffordable in practice [28,29]. Other forward
matching methods such as the Markov chain Monte Carlo (MCMC)
method, the multi-robot active olfaction method and the artificial
neural network (ANN) were investigated to improve identification
precision and to reduce computation time [30–33].

The backward solving method for source characterization in a built
environment mainly contains the quasi-reversibility (QR) method, the
Lagrangian-reversibility (LR) method and the Tikhonov regularization
Bayesian method. The QR method coupled with inverse computational
fluid dynamics (CFD) modeling was firstly proposed by Zhang and Chen
[34] in 2007 to identify a gaseous pollutant source in an enclosed cabin.
The numerical stability was improved by their creatively replacing of
the second order diffusive term with a fourth order stabilization term in
governing equations. Zhang et al. [35] then presented the LR method to
locate airborne particulate sources. Such approach tracked the motion
of individual particulate in a Lagrangian reference frame with known
initial conditions. In the latest progress of backward solving method,
Zhang et al. [29] developed an inverse CFD model based on Tikhonov
regularization and least-squares optimization to quantify the releasing
intensity of a continuously released gaseous contaminant source. Zhang
et al. [36] identified the release location, the temporal releasing rate
and the sensor alarming time by a united inverse method. To overcome
the limitation that current inverse models can identify only single
contaminant source, Zhang et al. [28] put forward an inverse method
that can accurately determine the locations and intensities of multiple
sources releasing same gaseous pollutant. The Tikhonov-based matrix
inversion was implemented in this method to obtain the intensities of

multiple candidate sources, and the source locations were determined
by the Bayesian method.

The adjoint probabilistic method to calculate the backward prob-
abilities of pollutant source location and releasing time was derived
first by Neupauer [37–41] and used in groundwater field. Subsequently,
the researchers in indoor environmental field introduced the prob-
abilistic method to trace indoor pollutant sources. The pseudo-reversi-
bility (PR) method, which shares similar solving process with the
probabilistic method, was proposed by Zhang and Chen [42] and used
for identifying sources with single sensor. Soon afterwards, Liu and Zhai
[43] coupled the probabilistic algorithm with the multi-zone model and
successfully located an instantaneous pollutant source in a multi-zonal
office building with known source releasing time. In addition, Liu and
Zhai [44,45] derived adjoint equations for CFD and utilized it to predict
source location probability within a two-dimensional office space and a
three-dimensional aircraft cabin. They then extended the probabilistic
method to locate a continuously released source, but the total release
mass of the contaminant was needed in advance [46]. The location or
travel time probabilities of all potential sources are obtained by cal-
culating the adjoint equation set by one time. The source with the
highest location or travel time probabilities denotes the true source
[47]. In the newest study, Wang et al. [48] focused on characterizing
the airborne pollutant source location in dynamic airflow by solving the
time-term-discretization-based adjoint equations.

In real scenarios, the release of indoor airborne contaminants is a
complicated process [49,50]. Pollutants can be released anywhere and
anytime, which means that they can contaminate the indoor air through
many possible airflow channels [51]. In 2011, WikiLeaks revealed a
confidential document that terrorists attempted to put cyanide into
ventilation systems of public buildings in America. Some researchers
[3,52,53] also realized that air duct systems of buildings may serve as
an ideal target for bioterrorism. In public buildings with central air-
conditioning systems, there are both slow and fast channels for pollu-
tants propagation, which defines two typical scenarios for source
characterization. If sources occurred in room spaces, where pollutants
diffuse slowly and complexly in the low-speed air velocity field, the
inverse CFD modeling [29,34] can locate the sources precisely by sol-
ving the governing transport equation for each time step. But it is time-
consuming. In case sources occurred in the ventilation system, where
the air velocity is high, and pollutants spread fast, the inverse CFD
modeling might not be suitable for such scenario because of the time

Nomenclature

Ai cross-sectional area of duct i
C0 concentration of the source released by the TSI 3079, mg/

m3

Ci contaminant concentration of duct i
∗Cj contaminant concentration leaving the duct junction j

Cmk aerosols concentration at measuring point k, mg/m3

Ĉsk
*

measured concentration vector for sensor nodes
di downstream junctions of duct i
gτ

* unconditional backward time PDF
∗gĈsk

normal PDF that describes the random measurement error
of sensors

∗gτ Ĉsk
conditional backward time PDF

∗Gτ joint backward time PDF for all of the sensor nodes
H unit of the adjoint state
K attenuation or reaction coefficient
Mp total released mass of the contaminant
N number of duct junctions
PDF probability density function
t time
tf end time for contaminant transport within the ventilation

system
Rs resident concentration
ui upstream junctions of duct i
ui air velocity of duct i
Vj air volumetric rate for the branch at duct junction j
xi contaminant dispersion distance along the duct i
xsk the location for the sensor node k
β consistent parameter

⋅δ ( ) Dirac delta function for a unit of the adjoint state
εx longitudinal eddy diffusivity
λ consistent parameter
σ2 variance of the concentration measurement error
σc standard deviations of calculation errors
τ backward time
τsk backward time at which the concentration is detected at

sensor node k
φi adjoint state of the concentration for duct i

∗φj adjoint state of the concentration at the junction j
∑ ∈ = Qi d j ii

sum of the air volumetric rate at the downstream end of
duct i

∑ + ∈ = ++
Qi u j i1 1i 1

sum of the air volumetric rate at the upstream end
of duct i+1

L. Zeng et al. Building and Environment 143 (2018) 378–389

379



Download English Version:

https://daneshyari.com/en/article/6696600

Download Persian Version:

https://daneshyari.com/article/6696600

Daneshyari.com

https://daneshyari.com/en/article/6696600
https://daneshyari.com/article/6696600
https://daneshyari.com

