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A B S T R A C T

Despite the importance of geospatial analysis of energy use in buildings, the data available for such exercises is
limited. A potential solution is to use geospatial information, such as that obtained from satellites, to dis-
aggregate building energy use data to a more useful scale. Many researchers have used satellite imagery to
estimate the extent of human activities, including building energy use and population distribution. Much of the
reported work has been carried out in rapidly developing countries such as India and China where urban de-
velopment is dynamic and not always easy to measure. In countries with less rapid urbanization, such as the
United States, there is still value in using satellite imagery to estimate building energy use for the purposes of
identifying energy efficiency opportunities and planning electricity transmission. This study evaluates nighttime
light imagery obtained from the VIIRS instrument aboard the SUOMI NPP satellite as a predictor of building
energy use intensity within states, counties, and cities in the United States. It is found that nighttime lights can
explain upwards of 90% of the variability in energy consumption in the United States, depending on conditions
and geospatial scale. The results of this research are used to generate electricity and fuel consumption maps of
the United States with a resolution of less than 200 square meters. The methodologies undertaken in this study
can be replicated globally to create more opportunities for geospatial energy analysis without the hurdles often
associated with disaggregated building energy use data collection.

1. Introduction

The latest IPCC report suggests that global annual greenhouse gas
(GHG) emissions must decrease 40–70% by 2050 and be entirely neu-
tralized by 2100 to keep global temperatures from increasing more than
2 °C and to avoid the worst consequences of climate change. Globally,
buildings are responsible for a third of all energy consumption and
greenhouse gas (GHG) emissions [1]. In the United States, buildings are
responsible for 40% of energy consumption and GHG emissions [2]. In
order to meet the IPCC's goals, energy use and emissions from the
building sector must be reduced substantially.

Understanding where and how buildings consume energy is im-
portant for identifying opportunities for energy use reductions devel-
oping efficient electricity distribution networks, where in the US for
example, buildings consume 70% of electricity [3]. Despite the im-
portance of geospatial analysis of energy use in buildings, the data
available for such exercises is limited. Building energy use data at the
state level is obtainable from the Energy Information Administration in
the US [4]; however, building energy use data at finer scales is difficult
to find because it is held by many different parties and often access is

restricted due to privacy concerns. Methods for obtaining or estimating
building energy use at finer scales utilize bottom-up or top-down ap-
proaches.

Bottom-up approaches focus on energy consumed in individual
buildings and often employ statistical and deterministic energy models
that account for physical building characteristics [5]. These approaches
require large samples of energy use data and building information in
order to calibrate the models. National surveys of building energy use,
such as CBECS [6] and RECS [7], are a useful resource for bottom-up
approaches to modeling building energy use, but extending the model
beyond the sample buildings requires detailed information about the
entire building stock, which is not usually available. Utility and energy
supply companies have information on customer-specific building en-
ergy use derived from either utility bills or meter data; however, this
information is not readily available to third parties due to privacy
concerns. In fact, several US states have laws that protect customer
privacy and limit what information utilities can share with third parties
[8,9,10].

Top-down modeling of energy consumption generally consists of
establishing relationships between energy consumption at a coarser
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scale with variables that impact energy consumption, such as popula-
tion, GDP, or satellite imagery. Top-down approaches typically face
fewer privacy-related regulatory hurdles because the requisite data are
at such a high level that they do not reveal specific customer in-
formation. These methods also do not rely on specific building energy
consumption for model calibration. Top-down allocation of energy
consumption can be achieved with census data, economic data, or
property tax assessment records [11,12]. However, these methods are
limited in their applicability at small scales and replicability across
geographies. Census data may not achieve accurate high-resolution
disaggregation as the location of domiciles does not capture commercial
and industrial energy use that occurs in city centers or areas with few
permanent residents. Economic data is often not available at small
scales. Property tax assessment records reside in different databases
held by multiple organizations, necessitating coordination between
multiple parties especially across larger geographic regions.

Unlike the aforementioned methods, satellite imagery of the earth at
night, which shows the extent and intensity of human activity, provides
a scalable and replicable dataset for top-down geospatial disaggregation
of energy consumption. Additionally, this imagery-based data is useful
for mapping and quantifying the light pollution associated with an-
thropogenic light sources and investigating the impacts of this pollution
on human health [13,14,15]. Nighttime light imagery is available from
both the DMSP and VIIRS satellites, which travel in sun-synchronous
orbits and measure the radiance of the earth during both the daytime
and nighttime pass. The measurements taken during the nighttime pass
include non-anthropogenic sources of light such as lightning, fires, and
reflected moonlight. The Earth Observation Group at the NOAA Na-
tional Geophysical Data Center processes the raw data, removing many
sources of non-anthropogenic lights, including cloud-cover and
ephemeral lights, and generates images showing mainly the lights from
human sources.

Annual composite stable-lights imagery from the DMSP satellite is
available from 1992 to 2013. Beginning in 2012, imagery from the
Visible Infrared Imaging Radiometer Suite Day Night Band (VIIRS DNB)
scanning radiometer aboard the Suomi National Polar-Orbiting
Partnership (NPP) satellite was made available. The VIIRS imagery
offers many benefits over the DMSP imagery. The VIIRS DNB has a
constant spatial resolution of 742m×742m [16,17] compared to
DMSP-OLS which has a ground footprint of 5 km×5 km [18]. VIIRS
imagery is projected to a 15 arcsecond grid compared to a 30 arcsecond
grid for the DMSP-OLS imagery. The upper end of the dynamic range
for the DMSP-OLS imagery is 10−8W cm−2·sr−1 [19], and the sensor
often saturated when measuring densely lit urban cores. Conversely, the
VIIRS DNB has a larger dynamic range of 3×10−9W cm−2·sr−1 to
0.02W cm−2·sr−1, although the instrument has been found to actually
outperform this range with a low end of 5×10−11W cm−2·sr−1 [16],
and does not saturate. An onboard solar diffuser is used to calibrate the
VIIRS DNB measurements so that radiance can be reported in units of
W·cm−2·sr−1 whereas the DMSP-OLS measurement were taken only as
a digital number from 0 to 63 that required post-processing to calibrate
to an actual radiance value. The VIIRS DNB instrument collects pan-
chromatic radiometric data in the range of 0.5–0.9 μm.

Because the VIIRS-DNB imagery is relatively new, most of the lit-
erature using nighttime lights as a measure of socio-economic activity
has considered imagery from the DMSP-OLS. A significant portion of
the reported research was focused on correcting for the shortcomings of
the DMSP-OLS imagery, such as developing methods to overcome the
low-resolution [20], post-processing calibration [21,22], and correcting
for over-saturated pixels in city centers [23]. While the VIIRS-DNB
imagery does not have many of these shortcomings, the images can still
benefit from processing to deal with over glow and seasonal variations
in radiance [20,24].

Nighttime lights has been used to measure urban extent [20,25],
population [22,26], economic output [19,24], and energy use
[25,10,27,19]. These studies found a strong relationship between

nighttime lights and socio-economic indicators at multiple scales. Al-
though, some studies found that the relationship is not as strong at
smaller scales [10,20] and in areas with specific activities, such as
mining, which increasenighttime lights without a commensurate in-
crease in socio-economic indicators like population [25].

In the study summarized in this paper, the suitability of nighttime
lights as an indicator of electricity and stationary fuel consumption,
including natural gas and heating oil, is evaluated at three geospatial
scales and compared against other available socio-economic datasets.
The potential for disaggregating energy data with nighttime light sa-
tellite imagery is also explored. The general methodology is first out-
lined. Then, applications of the nighttime lights to predict site and
source building energy uses for states, counties, and cities within the
contiguous US are described and select results are discussed.

2. Methodology description

2.1. Overview

The images used for this study were monthly VIIRS DNB composite
from 2012 through 2016 and an annual composite of 2015 (“VIIRS
Cloud Mask - Outlier Removed - Nighttime Lights”) which was pro-
cessed by NOAA, as described by Baugh et al. and Elvidge et al., to
remove outliers and to set background non-lights to zero [28,29].
Nighttime light measurements were compared to building energy use at
the state-level and city-level in the contiguous United States and at the
county-level in California. Building energy use was evaluated using four
different scopes: electricity, stationary fuel, site energy, and source
energy. Site energy is the energy consumed at the point of use, e.g.
electricity consumed by a building. Source energy is the total upstream
energy consumed to provide a unit of site energy, e.g. the coal con-
sumed in a powerplant to generate the electricity used by the building.
Source energy was calculated using EPA Portfolio Manager coefficients
of 3.14 for electricity and 1.05 for natural gas [30]. Additionally, other
potential predictors of building energy use including GDP, population,
latitude, land area, elevation, cooling degree days (CDD), and heating
degree days (HDD) were evaluated for their potential to predict elec-
tricity and stationary fuel use.

2.2. Total night lights (TNL)

Total night lights (TNL) is a common approach for quantifying the
nighttime lights in a region [31,19], this is also sometimes referred to as
“sum of lights” [32,33]. In this paper, the convention “total night
lights” or TNL is used. VIIRS DNB images were analyzed using the WGS
84 projection system and the TNL for each region was calculated using
an area-weighted sum of all radiance measurements within a polygon
defining the region (see equation (1)).
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In Eq. (1), Lk is the radiance measured by the scanner in nW/cm2-sr,
Ak is the area of pixel, and AR is the reference area of a 15 arc-second
pixel at the equator (463m×463m). This definition of TNL is con-
sistent with other research [23], and does not require making as-
sumptions about surface conditions (e.g. Lambertian) that would be
necessary to calculate photometric properties such as radiant intensity
or exitance. Most of the satellite images were not filtered or modified
before use. While some researchers have patched and smoothed the
data from VIIRS-DNB, and set a minimum threshold of 9 nW/cm2-sr,
these processes provided only marginal improvements to the regression
analysis and were not undertaken for this analysis [24]. Additionally,
setting a threshold of 9 nW/cm2-sr would remove valid anthropogenic
light sources from the image, for example the San Mateo Bridge was
found to have an average radiance of ∼4 nW/cm2-sr by Ref. [16].
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