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a b s t r a c t

This study presents the solution of transient heat conduction in a composite extended surface whose
periphery is exposed to convection and whose thermophysical properties experience discontinuities
along the longitudinal direction. The solution development uses the natural analytic approach and for-
mats the description so that the constants of integration of each of the composite segments are
expressed in terms of the previous segment’s eigenfunctions. This allows the solution to be “built” in a
very systematic and sequential manner. A three-segment case study is also provided to show the
simplicity and applicability of the implementation of this solution.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

This study is concerned with the analytic solution to the tran-
sient, one-dimensional conduction of heat in the composite
domain. The nature of the composite domain is such that it is
composed of numerous layers and that each layer may be charac-
terized by its own individual thermophysical parameter values.
When, between any adjacent composite layers, these parameter
values vary, a discontinuity is introduced at the interface.With each
additional layer, the solution becomes increasingly algebraically
complicated. This is because the solution of each individual com-
posite layer must carry information of all the discontinuities acting
at all of the composite interfaces. This information is passed be-
tween the layers through the interface conditions and is stored in
the constants of integration of each layer. Some analytic studies of
pure conduction in the composite slab have made efforts to
consider the representation of these constants in such a way that
greatly reduces the solution’s algebraic complexity.

The treatment of transient pure conduction in composite media
has been addressed in the past to find exact solutions in the
Cartesian, the spherical, and the cylindrical coordinate systems.
Exact solution procedures follow either the orthogonal expansion
technique or the Laplace transform method. The Laplace transform

method is especially suitable to problems in which the thickness of
at least one of the composite layers may be described as semi-
infinite or for capturing the solution at very early times [1e4]. For
geometrically finite composite systems, orthogonal expansion
techniques have been used to develop multi dimensional steady
solutions in the comprehensive works [5,6], and for transient
problems, the transient solutions of one dimensional domains [1,7e
12] and of transient multi-dimensional domains [13,14], in
conjunction with inverse methods [15,16], and with transient
heating and transient boundary conditions [16,17]. Further appli-
cations of the analytic solution in the composite domain include
variations of transient conduction that address transport in bio-
logical media and diffusion-advection in porous media [18e26]. The
solutions to transient diffusion and transient conduction in the
composite slab of an arbitrary number of “N” layers have been
presented in previous studies [11,17]. However these solutions are
often presented in such a way that the algebraic expressions
involved are very complex. This increases the potential for making
typographical errors when the symbolic forms of these solutions are
transcribed. There have been successful attempts to develop the
solution of the composite domain such that the eigenfunctions
(and the associated constants of integration) of each layer are
explicitly described in terms of the neighboring layers [9,27,28]. This
approach lends itself to a solution that can be presented in
an algebraically simple, methodical, and programmable manner
because it circumvents the need for the implicit simultaneous so-
lutions of one boundary condition and all of the interface conditions.
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This paper will use a similar approach and extend the previous
work done in composite systems to a more complex application:
transient heat conduction along the composite extended surface.
The extended surface introduces additional terms and additional
potential for discontinuities that must be addressed in order to
extend the previous work. The discussion presented here begins
with a description of the extended surface in the composite
domain. As the solution is developed, this paper will show signif-
icant deviations from the solutions of pure conduction that include
the handling of the governing equations and the evaluation of the
eigenvalues. These deviations are discussed in detail and the final
solution is formulated in an algebraically simple manner.

1.1. Segmented fin

One dimensional transient heat conduction in extended sur-
faces and fin like structures is typically characterized by some
oblong geometry whose periphery is exposed to convection. A
simple depiction of this is provided in Fig. 1 where the heat transfer
at the base is enhanced by an increase in the area of the wetted
surface. The mathematical description of heat conduction in the fin
can be represented by the differential equation [29]:

1
a

vT
vt

¼ v2T
vxþ2 �

hP
kAc

T � TNð Þ (1)

where AC is the fin cross sectional area and P is the fin perimeter
length.

The use of Eq. (1) is restricted to situations in which the cross
sectional temperature gradient at any longitudinal position, xþ, is
negligible. This is relevant when the local cross sectional Biot

number, BiC ¼ hLC/k, is small: that is, when the resistance to con-
duction along the cross section is much smaller than resistance to
the peripheral convection heat transfer. A negligible cross sectional
temperature gradient also implies that the conduction resistance is
much lower along the cross section than it is along the axial di-
rection, and this can be anticipated when the ratio of the charac-
teristic lengths, LC/L, is small.

Variations of heat conduction in fins and similar structures are
found in many engineering applications including: electronics
cooling, heat exchangers, and thermal regulation of turbine blades.
A great deal of analytic and numerical work addresses the topic
which is presented in its steady form in introductory texts on heat
transfer, and in its transient form in advanced texts introductory
and advanced texts on heat transfer [30,31].

Conventional derivations and solutions of Eq. (1) are limited to
several requisite assumptions that are detailed in ([30], pp 86). The
most limiting of these assumptions are that:

Nomenclature

a, b Constants of integration
c Specific heat capacity
h Convection heat transfer coefficient
k Thermal conductivity
m Ratio of resistance of heat transfer by conduction along

the axis to that of peripheral convection
m2

i ¼ ðL2hP=kAcÞi
t Dimensional time variable
tO Time constant
x Dimensionless spatial coordinate xi ¼ xþi =Li
xþ Dimensional spatial coordinate
Ac Cross sectional area
E Error
F Dimensionless initial condition
K Inverse conduction resistance Ki ¼ ðk=LÞi
HO Biot number at tip of first segment (1) HO ¼ hOL1=k1
HL Biot number at tip of last segment (N) HL ¼ hLLN=kN
j Imaginary unit: j ¼ (�1)1/2

L Segment length
LC Cross sectional characteristic length
P Perimeter length
T Temperature
TN Local ambient temperature at segment periphery
TO Local ambient temperature of segment 1 exposed end
TL Local ambient temperature of segment N exposed end
DTi Normalized difference of ambient temperatures

between adjacent segments i ¼ 2.N:
DTi ¼ TNi � TNi�1ð Þ= TO � TLð Þ

DTL Normalized difference of ambient temperatures at last
segment (N) DTL ¼ TL � TNNð Þ= TO � TLð Þ

DTO Normalized difference of ambient temperatures at first
segment (1) DTO ¼ TO � TN1ð Þ= TO � TLð Þ

Xi Eigenfunction of segment “i” (used in the evaluation of
the eigenvalues)

Xi,n Eigenfunction of segment “i” associated with the “nth”
eigenvalues (used in the evaluation of the series
solution)

Greek letters
G Solution time dependent component
F Dimensionless separation variable

Fiðxi; sÞ ¼ XiðxiÞ$GiðsÞ
J Steady Solution Component
a Thermal diffusivity ai ¼ ðk=rcÞi
d Fourier number di ¼ tOai=L2i
m Segment eigenvalue
r Density
s Dimensionless time s ¼ t/tO
f Dimensionless segment temperature

fi ¼ ðTi � TNiÞ=ðTO � TLÞ

Repeated subscripts
i Segment index integer
n, m Eigenvalue index integer
F Associated with the initial condition
N Number of segments or referring to last segment
R The reference segment (the segment with a minimum

or zero value of the product of dm2)

Fig. 1. Extended surface exposed to convective heat transfer at its periphery.
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