
Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

Inferring personalized visual satisfaction profiles in daylit offices from
comparative preferences using a Bayesian approach

Jie Xionga,b, Athanasios Tzempelikosa,b,∗, Ilias Bilionisc, Nimish M. Awalgaonkarc,
Seungjae Leea,b, Iason Konstantzosa,b, Seyed Amir Sadeghia,b, Panagiota Karavaa,b

a Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN, 47907, USA
b Center for High Performance Buildings, Ray W. Herrick Laboratories, Purdue University, 140 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
c School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA

A R T I C L E I N F O

Keywords:
Personalized visual preferences
Visual satisfaction profiles
Machine learning
Bayesian modeling
Daylighting

A B S T R A C T

This paper presents a new method for developing personalized visual satisfaction profiles in private daylit offices
using Bayesian inference. Unlike previous studies based on action data, a set of experiments with human subjects
and changing visual conditions were conducted to collect comparative preference data. The likelihood function
was defined by linking comparative visual preference data with the visual satisfaction utility function using a
probit model structure. A parametrized Gaussian bell function was adopted for the latent satisfaction utility
model, based on our belief that each person has a specific set of neighboring visual conditions that are most
preferred. Distinct visual preference profiles were inferred with a Bayesian approach using the experimental
data. The inferred visual satisfaction utility functions and the model performance results reflect the ability of the
models to discover different personalized visual satisfaction profiles. The method presented in this paper will
serve as a paradigm for developing personalized preference models, for potential use in personalized controls,
balancing human satisfaction with indoor environmental conditions and energy use considerations.

1. Introduction

Recent studies have focused on predicting visual discomfort in
daylit spaces by evaluating and suggesting visual discomfort metrics,
including daylight discomfort glare in perimeter offices with complex
fenestration systems and variations in luminance patterns within the
field of view [1–12]. In parallel, efficient shading controls have been
developed to protect occupants from glare [13–22]. While preventing
glare is essential, achieving general visual comfort conditions does not
translate into satisfaction with the visual environment (or optimal vi-
sual conditions). Instead, learning individual preference profiles with
respect to visual conditions, without just considering discomfort sce-
narios, could lead to optimized visual environments for these in-
dividuals. These environments could then be realized by implementing
the learned personalized profiles in indoor environmental controls.

Therefore, efficient methods for learning personalized visual sa-
tisfaction/preference profiles are needed. This can be quite challenging
in spaces with daylighting controls. Using simple variables to in-
vestigate lighting preferences, such as work plane illuminance, may not
be sufficient, especially when occupants conduct vertical tasks (i.e.,
computer screens) and daylighting systems are dynamically controlled.

Satisfaction with the visual environment is affected by objective (i.e.,
environmental variables) and subjective (i.e., personal preference or
psychological) factors, as well as by other contextual factors such as the
variability of exterior conditions, outside view [88,89], space function
and layout, type of daylighting/electric lighting systems and control
type [23–33]. The findings of [88,89] show that the nature of a window
view is a factor affecting the sensation of visual discomfort –and
therefore, certainly affects visual preferences overall. Also, more recent
studies showed that perceived control, control access and user sa-
tisfaction with daylighting and electric lighting systems operation are
inter-related and complex [34–38]; essentially, visual preferences need
to be incorporated in the control system itself.

Adaptive controls, which take into account occupant preferences,
are a potential solution to this problem. Indeed, modeling efforts have
been made in this direction [39–43]; however, these models were de-
veloped based on occupant actions (or interactions with daylighting or
electric lighting systems). Although monitoring these interactions and
developing respective probabilistic models [37–50] are useful from an
occupant behavior point of view (with applications in building simu-
lation models), the cause of the action could be attributed to a variety of
reasons (e.g., reducing discomfort, increasing only outside view, or
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even random effects, etc.). These causes are not necessarily related to
achieving true satisfaction with overall visual conditions. Behavioral
models may not be directly applicable for discovering personalized
visual preference profiles, since human actions could be the combined
results of several unknown factors [51–53]. As aptly stated by Lindelof
and Morel [54], “it makes sense for a controller to learn from the desired
effects of the occupants' actions, not necessarily from the actions them-
selves”. In addition, only simple and easily measurable variables were
considered in these approaches; in reality, occupant visual preferences
may depend on multiple factors requiring information that can be dif-
ficult to collect in real buildings. Moreover, very few studies consider
the diversity associated with occupant behavior [55–57].

Visual satisfaction and preference are two related but distinct con-
cepts. In this study, visual satisfaction is defined as the magnitude (or
level) of satisfaction with the perceived visual environment for an in-
dividual; while visual preference refers to a relative attitude towards
two (or more than two) different visual conditions by comparing them.
Using this definition, the visual satisfaction level could be modeled as a
utility function u(x), where x is a vector of variables describing the
physical visual condition (state), and preference is a result of comparing
the utility values corresponding to two (or more) conditions. The re-
lationship between these two concepts is illustrated in Fig. 1.

Direct surveys using numerical scaled ratings is a commonly used
method in occupant satisfaction research. User-friendly interfaces can
be used as survey tools to extract some of the unknown information and
rationale behind actions or dissatisfaction with visual conditions
[23,38,58]. However, asking humans to rate with a scale has some
built-in problems (i) scales could vary with different individuals and (ii)
human evaluation is affected by drift, where the scale varies with time,
and anchoring, where early experiences weigh higher [59,60]. Instead,
studies have argued that relative preferences are often more accurate
than absolute ratings [61,62]. Therefore, the satisfaction utility could
be modeled as a latent function and inferred from comparative pre-
ferences (based on the satisfaction-preference relationship as shown in
Fig. 1), following a Bayesian inference approach.

Bayesian approaches for learning occupant preferences are parti-
cularly attractive due to their innate ability to explicitly model un-
certainty in occupants' latent utility functions [63,64,87]. Furthermore,
Bayesian approaches automatically incorporate epistemic uncertainty
(uncertainty induced by the limited availability of data) in an intuitive
and natural way [65]. These advantages allow for addressing decision-

making problems in a principled manner: combine existing knowledge
(prior beliefs) with additional knowledge that is derived from new data at
hand (likelihood function), resulting in our prior knowledge (beliefs) being
updated to new knowledge (posterior beliefs). These posterior beliefs can
then be used as priors in future analyses, providing learning chains in
science [66]. The spread associated with the inferred posterior dis-
tribution quantifies the uncertainty associated with the sampling dis-
tribution. With these inherent advantages, we can develop flexible
probabilistic models and investigate relationships between variables
and models.

Despite these benefits, so far, only three existing studies have tried
to implement Bayesian inference-based models in this field. Lindelöf
and Morel [54] applied a Bayesian formalism to infer the probability of
occupants considering horizontal illuminance distributions as un-
comfortable. This was the first study that used this approach, and the
authors discuss the issues of including more variables, challenges re-
lated to implementation in adaptive controls, and balancing visual
comfort and energy use. More recently, Sadeghi et al. [55] inferred
behavioral probability models of human interactions with shading and
lighting systems following a fully Bayesian approach, showing that,
besides environmental variables, human attributes are significant pre-
dictors of human interactions. Although these studies presented in-
novative predictive methods, they are still based on interactions with
shading and lighting systems or visual discomfort –instead of visual
preferences. Most recently, Sadeghi et al. [67] developed a Bayesian
classification and inference method to predict probability distributions
of occupant visual preferences in perimeter offices using a data set from
a large number of occupants. The model structure includes environ-
mental variables (work plane illuminance, shading position and electric
lighting ratio) as well as latent human characteristics and is able to
determine the optimal number of clusters of occupants with similar
visual preference characteristics. Moreover, personalized profiles of
new occupants were derived using a mixture of the clustered prob-
abilistic preference models.

This paper presents a new method for developing personalized vi-
sual satisfaction profiles in daylit offices using Bayesian inference.
Comparative visual preference data were collected from experiments
with human subjects under changing visual conditions in identical
daylit private offices. Visual satisfaction utility functions were then
inferred through a Bayesian approach, adopting a parametrized
Gaussian bell function for the latent satisfaction utility models.

2. Methodology

The statement that one visual condition is preferred to another can
be expressed as an inequality relation >q ru u( ) ( ), where q and r are
two vectors of variables defining these two visual conditions (states),
and ⋅u ( ) defines the underlying (hidden) satisfaction utility function
[65]. This approach of defining a satisfaction utility function for pre-
ference learning is intuitive and easy to implement, but it is often very
difficult to define a meaningful utility function [68]. One approach for
creating the utility function is the algorithmic preference learning [69].
In our case, the preference learning process requires two parts: (i) ac-
quiring comparative visual preference data from occupants and (ii)
learning the response surface of the satisfaction utility function from
the comparative preferences. For the first part, comparative visual
preference data were obtained from specially designed experiments
(section 2.1). The preference data were used to infer the visual sa-
tisfaction utility functions as posteriors through a Bayesian approach,
and the inferred utility was sampled using a sequential Monte Carlo
algorithm (section 2.2).

2.1. Comparative preference experiment

2.1.1. Experiment design and setup
Following the principles of preference learning, a set of experiments

Fig. 1. Relationship between visual satisfaction and comparative visual pre-
ference.
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