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A B S T R A C T

An indoor environment should be designed to provide occupants with a desirable level of thermal comfort and
air quality. The optimal design of an indoor environment can be achieved by using the computational fluid
dynamics (CFD)-based adjoint method to determine the size, locations, and shape of air supply inlets, and the air
supply parameters (i.e., velocity, temperature, and angle). However, the optimal design may involve a large
number of air supply inlets, which would be impractical to implement. This investigation developed an area-
constrained topology and cluster analysis to consolidate multiple air supply inlets into a limited number and to
determine their size and locations. The desired indoor environment can be maintained by further optimizing the
air supply inlet shape and parameters. This investigation demonstrated the method's capability by applying it to
a two-person office and a single-aisle, fully-occupied aircraft cabin. The optimal thermal comfort conditions
around the occupants can be achieved with a limited number of air supply inlets at appropriate locations.

1. Introduction

In a survey of human activity patterns, Klepeis et al. [1] found that
people in the United States spent an average of 87% of their time inside
buildings. It is therefore very important to create a comfortable,
healthy, energy-efficient, and productive indoor environment. Such an
indoor environment is usually created by heating, ventilating and air-
conditioning (HVAC) systems. In the United States, heating of building
spaces accounts for 37% of the total building energy consumption, and
cooling of spaces accounts for 10%; in turn, the total energy use in
buildings accounts for 41% of the country's primary energy consump-
tion [2]. Even with such high energy usage, the indoor environments
created were found to be unsatisfactory in nearly a quarter of U.S. re-
sidences [3]. Thus, it is crucial to design an HVAC system with optimal
air supply conditions that provides a desirable indoor environment.

Conventional design of an indoor environment uses a trial-and-error
process [4]. The process requires tens of trials to adjust the HVAC
system parameters for creation of a better environment. Even with such
a dedicated effort, the final design may not be optimal. Recently, many
researchers have attempted to use optimization methods such as the
genetic algorithm (GA) method [5], artificial neural network (ANN)
method [6], proper orthogonal decomposition (POD) [7], and adjoint
method [8]. For design of an indoor environment, all the above

methods would require the use of computational fluid dynamics (CFD)
for determining the air distributions. This is because CFD is the most
accurate and informative tool for predicting indoor air distributions
[9]. Thus, most recent optimizations have been CFD-based, as sum-
marized by Chen et al. [10].

Chen et al. [10] compared different CFD-based optimization
methods and found that the CFD-based GA method could find the
globally optimal solution with high accuracy, but its computing time
was equivalent to 20 times that of the adjoint method, and its com-
puting time was proportional to the number of design variables [11].
The CFD-based ANN method performs CFD simulations of multiple
representative cases to train the ANN. With a well-trained ANN, the
design objectives can be obtained without using any CFD simulations in
the design procedure, and thus this method can be highly efficient.
However, the prediction error of the ANN may reduce the accuracy of
design results [12]. The CFD-based POD method establishes cause-ef-
fect maps between the design variables and the design objectives using
a number of CFD simulations as samples. With this mapping relation-
ship, the POD method can directly provide a design objective for a
given design variable, thus speeding up the calculation. However, the
accuracy of the POD method also depends on the number of samples
used [13]. The CFD-based adjoint method is a gradient-based optimi-
zation method that computes the gradient of the objective function over
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the design variables to provide the search direction. Thus, the CFD-
based adjoint method can quickly find the optimal value, and the
computing time does not change with the number of design variables,
although it may fall into local optima [4]. By means of the above
comparison, this study identified the CFD-based adjoint method as a
suitable approach for designing an indoor environment.

Liu et al. [14,15] used the CFD-based adjoint method to identify the
air supply inlet size and location and air supply parameters for a ven-
tilated cavity and an aircraft cabin. They fixed the number of air supply
inlets and assumed the inlet shape to be rectangular during the design
process. For an optimal indoor environment, the number of air supply
inlets may be unknown in advance, and the air supply inlet can take any
shape. Therefore, the present investigation further developed the CFD-
based adjoint method to determine the number, size, locations, and
shape of the air supply inlets and the corresponding air supply para-
meters.

2. Methods

Using the CFD-based adjoint method to design an indoor environ-
ment, this study first needed to construct an objective function for the
design objectives. There are multiple design objectives for an indoor
environment, such as thermal comfort, air quality, and energy effi-
ciency, etc. For the purpose of demonstration, this study used thermal
comfort as the design objective. The thermal comfort level in an indoor
environment can be quantitatively defined by the predicted mean vote
(PMV) [16] and the predicted dissatisfied percentage (PD) due to draft
[17]. The closer to zero the PMV and PD are, the better the thermal
environment is. Therefore, this study normalized each criterion and
constructed a single objective function by using weighting factors as
shown in Eq. (1):
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where J is the objective function; ξ a vector that denotes the design
variables, such as air supply velocity, Vinlet, air supply temperature,
Tinlet, and number, size, locations, and shape of the air supply inlets; Θ
the design domain of the indoor environment; and w1 and w2 the
weighting factors. This investigation used values for w1 and w2 from
Ncube and Riffat [18], who conducted a questionnaire survey in offices
and found w1=0.455 and w2=0.545. The goal of the inverse design
in this study was to identify the optimal ξ that ensured a minimal ob-
jective function J.

2.1. CFD-based adjoint method

To minimize the objective function, the CFD-based adjoint method
started with initialized design variables and conducts CFD simulations
to check whether or not the objective function was sufficiently small. If
not, the method calculated the gradient of the objective function over
the design variables. Since the design variables were not explicitly in-
cluded in the objective function, it was impossible to find the re-
lationship between the objective function and the design variables di-
rectly. To obtain the gradient, the adjoint method introduced an
augmented objective function L as shown in Eq. (2).

∫= + P TV NL J ( , , ) dΩa aaΩ (2)

where Ω was the computational domain; Pa, Va, and Ta the adjoint
pressure, adjoint velocity, and adjoint temperature, respectively; and N
the incompressible Navier-Stokes equations in vector form.

The gradient of the augmented objective function over the design
variables could be expressed as Eq. (3). Direct calculation of the gra-
dient of the augmented objective function over the air velocity V, air
temperature T, and pressure P was very difficult. Therefore, the adjoint

method set the last three terms of Eq. (3) to zero, as expressed by Eq.
(4). From Eq. (4), this study derived the adjoint equations as shown in
Eqs. (5)–(7). By numerically solving the Navier-Stokes equations and
the adjoint equations alternatively, we could calculate the gradient of
the objective function over the design variables using Eq. (8).
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where ν is the effective viscosity; κ the effective thermal conductivity, g
the gravity vector; γ the thermal expansion coefficient of air; A and B
the source items in the adjoint momentum equations; λ the adaptive
step size [19]; and k a positive integer. Next, we update the design
variables for each initial air supply inlet cell using the steepest descent
method [20] as shown in Eq. (9). This process was repeated until the
objective function was sufficiently small.

The adjoint method could determine the movement of each cell
individually within the air supply inlet. If the number of air supply
inlets is fixed [14,15], the movements of all the cells within the air
supply inlet needed to be averaged. Then, the adjoint method changes
only the size and location of the air supply inlet as shown in Fig. 1 (red
dashed line). However, the optimal air supply inlet number may be
variable, and the air supply inlets could take any shape. If we let each
cell within the air supply inlet move individually, the design would lead
to many small air supply inlets as shown in Fig. 1 (black regions), which
is not realistic in an engineering application. Determination of the op-
timal and reasonable number, location, and shape of air supply inlets
requires further investigation.

2.2. Determination of number, location, and shape of air supply inlets

To determine the optimal and reasonable number, location, and
shape of air supply inlets, this study investigated an area-constrained
topology optimization method [21]. The method was originally used to
identify the optimal solid material distribution in a given space. The

Fig. 1. Inverse design of air supply inlets by the CFD-based adjoint method.
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