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A B S T R A C T

Due to the ill-posedness of many inverse problems, parameter estimates are often prone to a possibly large
uncertainty, caused by a series of errors and approximations in the experimental and modelling work. Stochastic
state-space models for time series modelling incorporate a term of process noise that represents system error;
most studies on building thermal model calibration however employ deterministic models that overlook this
error.

This paper investigates how accounting for modelling errors affects the results of model calibration. Several
simplified models are defined to simulate the indoor temperature of an experimental test cell. Some models
include process noise and others do not. The parameters of each model are then learned repeatedly by using
several training datasets from the test cell. The MCMC algorithm is used for training. The robustness of para-
meter estimates between independent trainings is evaluated. Then, the forecasting ability of the deterministic
and stochastic options are compared, in terms of accuracy and robustness. Results show that stochastic mod-
elling considerably increases the uncertainty of parameter estimates, but ensures their consistency between
separate trainings, whereas deterministic models are less robust and offer a less reliable forecasting.

1. Introduction

The calibration of simplified building thermal models using in-situ
measurements is now a widespread research topic [1]. It is a type of
inverse problems, as the user attempts to identify the causes of a phy-
sical phenomenon by observing its consequences: typically, observing
the evolution of indoor temperature leads to the estimation of external
sollicitations or envelope properties. It is solved as an optimisation
problem, where the objective is the minimisation of the deviation be-
tween measurements and predictions from a model [2,3]. Such cali-
bration is commonly performed for two general types of applications:
the characterisation of the intrinsic building performance [4–9] or
other physical values; the identification of a model for predictive pur-
poses [10–12], for instance in the aim of model predictive control
[13–16]. In the first case, the model should be based on some physical
representation of reality in order to assess physical parameter values. In
the second, a black-box model is suitable as it is used primarily for
predictive purposes.

Due to the ill-posedness of many inverse problems [17], parameter
estimates are prone to a possibly large uncertainty, caused by a series of
errors and approximations in the experimental and modelling work

[18,19]. First, the model is an approximation of the real system: this
model discrepancy may result from missing physics, overlooked input
variables, numerical approximations, erroneous hypotheses, etc. Sec-
ondly, experimental uncertainty arises from inaccurate or intrusive
sensors. Accounting for these errors when solving an inverse problem
allows guaranteeing the value of estimated parameters within certain
bounds [1].

Most of the time, the inverse problem of parameter characterisation
is formulated supposing an unbiased model [18]. According to this
hypothesis, there exists a set of parameter values that will allow the
model to accurately simulate reality, and the only deviation between its
output and experimental observations is measurement noise. This hy-
pothesis is exceedingly optimistic, especially when models used for the
characterisation of building thermal behaviour are simplified resistor-
capacitor (RC) structures [3]. Accounting for modelling approximations
is essential for the legitimacy of calibrated models and the interpret-
ability of their parameters. One possible way to do so is using stochastic
differential equations, solved with a Kalman filter for the estimation of
states [20]. Another option for the quantification of model uncertainty
is to calibrate a discrepancy function in an iterative model updating
procedure [21,22].
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The literature offers many applications of parameter estimation and
forecasting with stochastic models [23–27], but no direct comparison
with their deterministic counterpart. According to [26]: stochastic
models give more reproducible results and less bias, because random effects
due to process and measurement noise are not absorbed into the parameter
estimates but specifically accounted for by the noise terms. Separately, [28]
stated and demonstrated that an analysis that does not account for model
discrepancy may lead to biased and over-confident parameter estimates and
predictions. The target of the present paper is to show this effect, in the
case of a simple building and lumped capacitance models, made of a
network of resistors and capacitors (denoted RC models). The process
noise is included in the formulation of some of these models (denoted
stochastic models), and excluded in others (deterministic models). The
parameters of each model are then learned repeatedly by using several
training datasets from an experimental test cell. The robustness of
parameter estimates between independent trainings is evaluated. Then,
the forecasting ability of the deterministic and stochastic options are
compared, in terms of accuracy and robustness.

Sec. 2 briefly recalls the theory of filtering, forecasting and in-
ference in state space models, applied to building modelling. Sec. 3
extends the questioning of the paper shown above, and presents the
experimental and numerical methodology to answer it. Sec. 4 then
shows the results of this study.

2. Inference in state space models for building modelling

2.1. Linear state space models

The presented study considers the particular (yet quite widespread
and flexible) case of linear, Gaussian, time-invariant, discrete-time state
space models [20]:

= + +−x F x G u wt θ t θ t t1 (1)

= +y H x vt θ t t (2)

where t is a discrete time coordinate. The terms of this system are de-
noted as such:

• xt is a p-dimensional vector of state variables;

• yt is a q-dimensional vector of observations, or output variables;

• ut is a r-dimensional vector of inputs variables;

• ∼w Q(0, )t N is the process noise;

• ∼v R(0, )t N is the observation noise.

In addition to the covariances Q and R, the system is defined by its
matrices Fθ, Gθ and Hθ. The subscript θ indicates that these matrices are
functions of a vector of parameters θ: parameter estimation is the
process of assessing θ from a set of observations = ∈ …t Ny y{ , 1 }N t1: .
The process noise w{ }t is a way to account for modelling approxima-
tions, unrecognized inputs or noise-corrupted input measurements
[23]. The main target of this work is to show the importance of this
term in the outcome of a parameter estimation problem.

[26] denote stochastic state-space models as grey-box models, as
opposed to deterministic white-box models which do not account for
process noise. This definition of grey-box versus white-box models is
however not unanimous in the literature: in the present paper, both
alternatives will be denoted as stochastic or deterministic.

2.2. Simplified building modelling

As a discrete-time model, Eq. (1) is not the direct expression of
physical conservation equations. The present section describes how a
simplified building model, written in continuous time, can be translated
to this form in order to perform Kalman filtering, inference and fore-
casting.

This study uses RC models (or lumped models) for simplified

building modelling. In the absence of non-linear phenomena (aeraulics,
long-wave radiation, moisture transfer …), these models can be ex-
pressed as linear state space models in continuous time [23]:

= + +t t t tT A T B u w˙ ( ) ( ) ( ) ( )θ θ (3)

= +t t ty C T v( ) ( ) ( )θ (4)

• tT( ) is the p-dimensional vector of all temperatures calculated by the
model;

• ty( ) is the q-dimensional vector of output temperatures that will be
compared to measurements (typically =q 1 and ty( ) is the indoor
temperature);

• tu( ) is the r-dimensional vector of boundary conditions: prescribed
heat input, solar radiation and outdoor temperature;

• ∼tw Q( ) (0, )cN is the process noise in continuous time;

• ∼tv R( ) (0, )cN is the observation noise in continuous time.

The target of a model calibration problem is to fit the model output
ty( ) with measurements carried in an experimental setting, in order to

estimate parameter values θ that constitute the terms of the system
matrices Aθ, Bθ and Cθ (the latter is often a matrix of zeros and ones
indicating which of the temperatures tT( ) are observed). Measurements
are classified according to their role with respect to the model: inputs

= ∈ …t Nu u{ , 1 }N t1: are outdoor temperature, solar radiation and
heating power; the observed output y N1: is the indoor temperature. The
equations for the specific RC models used in this study will be detailed
below in Sec. 3.3.

The stochastic model described by Eq. (3) must be discretized in
order to specify its evolution between discrete time coordinates, as in
Eq. (1). Let us denote the sample interval length tΔ and assume that the
inputs tu( ) are constant during this interval. Then the system made of
Eqs. (3) and (4) can be translated into the discrete system made of Eqs.
(1) and (2) through:

= tF Aexp( Δ )θ θ (5)

= −−G A F I B( )θ θ θ θ
1 (6)

=H Cθ θ (7)

∫= t t tQ A Q Aexp( Δ ) exp( Δ )d
t

θ c θ
T

0

Δ

(8)

=
t

R R1
Δ c (9)

The typical workflow for calibrating an RC model is to first select a
model structure (1R1C, 2R2C, etc.) and write its equations in matrix
form 3 and 4. Measurements are then acquired at a sample rate of tΔ
and the model is discretized with Eq. (5) through (9) in order to obtain
the system in the form of Eqs. (1) and (2). Once the system is expressed
as such, one can proceed to the next steps of filtering, parameter esti-
mation and forecasting.

2.3. Kalman filter

Let us first suppose that the parameters θ of the system are known,
and a sequence of output observations y N1: and input variables u N1: has
been obtained.

Most building model calibration practitioners work with determi-
nistic models, in which modelling errors are not explicitly expressed as
it is in the previous section. In these circumstances, all states x N1: of the
system are predicted given some parameter values θ, and compared
with observations in a single operation. The objective function of the
parameter estimation problem is the sum of squared errors
∑ −= y H x( )t

N
t θ t1

2. In a stochastic setting however, the model is con-
sidered potentially wrong and its error covariance Q might also be
unknown. If the model is linear, the estimation of the underlying states
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