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A B S T R A C T

Detailed aerodynamic information of local wind flow patterns in urban canopies is essential for the design of
sustainable and resilient urban areas. Computational Fluid Dynamics (CFD) can be used to analyze these com-
plex flows, but uncertainties in the models can negatively impact the accuracy of the results. Data assimilation,
using measurements from wind sensors located within the urban canopy, provides exciting opportunities to
improve the quality of the predictions. The present study explores the deployment of several wind sensors on
Stanford's campus to support future validation of CFD predictions with uncertainty quantification and data
assimilation. We focus on uncertainty in the incoming wind direction and magnitude, and identify optimal
sensor placement to enable accurate inference of these parameters. First, a set of Reynolds-averaged Navier-
Stokes simulations is performed to build a surrogate model for the local velocity as a function of the inflow
conditions. Subsequently, artificial wind observations are generated from realizations of the surrogate model,
and an inverse ensemble Kalman filter is used to infer the inflow conditions from these observations. We in-
vestigate the influence of (1) the sensor location, (2) the number of sensors, and (3) the presence of noise or a
bias in the measurement data. The analysis shows that multiple roof level sensors should enable robust assim-
ilation of the inflow boundary conditions. In the future field experiment, sensors will be placed in these locations
to validate the methodology using actual field measurement data.

1. Introduction

The continuous growth of urban areas, nearly tripling from the year
2000–2030 [1], presents a challenge for cities striving to maintain a
sustainable, healthy and comfortable environment [2]. In increasingly
dense and complex urban canopies, detailed aerodynamic information
on local wind flow patterns will be essential to determine pedestrian
wind comfort, air quality, ventilation strategies, and deployment of
wind turbines. Computational Fluid Dynamics (CFD) can be used to
study these complex urban canopy flow and transport processes (e.g.
Refs. [3–6]), but the accuracy and reliability of the solutions remain a
concern that requires further validation efforts [7]. CFD studies com-
monly rely on wind tunnel measurements for model evaluation and
validation, e.g. Refs. [8,9]. While these have contributed significantly
to our understanding of urban flow phenomena, it should be ac-
knowledged that a wind tunnel experiment cannot fully represent the
complexity of urban canopy flows. The use of idealized and controlled
boundary conditions, the introduction of geometrical simplifications,
and in some cases the missing of physics in the experiment, can lead to
discrepancies between wind tunnel and field measurements. For ex-
ample, Klein et al. [10] demonstrated significant differences between

wind tunnel and field data, which were partially attributed to the large-
scale variability in the atmospheric boundary layer (ABL). García-Sán-
chez et al. [11] further demonstrated that this inherent variability in
the incoming ABL can significantly influence the predicted flow pat-
terns. Hence, to assess the true predictive capabilities of CFD models, it
is essential to consider validation with field measurements. These va-
lidation studies should account for the inherent uncertainty in the de-
finition of the boundary conditions. Uncertainty quantification (UQ)
frameworks [12,13] provide a formal method to quantify the influence
of these uncertainties on the quantities of interest and provide results
with confidence intervals [14].

Our previous UQ studies for urban flow have relied on an upstream
sensor measurement, or on mesoscale simulation input, to characterize
the uncertainty in the incoming ABL. Since these studies modeled a
short-term field experiment with one dominant wind direction, mea-
surements from a single upstream sensor, or results from mesoscale
simulations for this specific wind direction, provided sufficient in-
formation. However, if we want to consider a variety of dominant wind
directions, this process is more complicated. Commonly, one would rely
on recordings at the most nearby weather station and directly impose
the recorded wind conditions as boundary conditions for simulations at
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the location of interest. This can introduce considerable errors, since it
doesn't account for potential deviations between the undisturbed in-
coming and measured wind conditions. The alternative of performing
upstream measurements to define inflow boundary conditions would be
cumbersome, since exploring all possible wind directions would require
long-term deployment of multiple weather towers.

In this study, we explore the use of an inverse modeling approach
that assimilates data from strategically placed sensors within the urban
canopy to iteratively estimate the probability distribution for the inflow
boundary condition. This distribution can then be used in a forward UQ
analysis to provide predictions with quantified confidence intervals.
The approach could render urban flow simulations more flexible and
more accurate, in particular given the increasing trend to deploy wind
and air quality sensors in cities [15].

As a starting point, we numerically evaluate the capabilities of the
inverse model, and we use the results to guide the design of a field
experiment on Stanford's campus. By using the campus as our test case,
we have considerable flexibility to place the sensors in different loca-
tions at pedestrian, terrace, and roof level, with the possibility to easily
perform long term measurements. In addition, the campus geometry
has all the elements of a small urban environment, and Fig. 1 demon-
strates the importance of the inflow boundary conditions: a variation of
20° in the incoming wind direction significantly alters the flow field.

The proposed inverse Bayesian technique is based on the inverse
Ensemble Kalman Filter (EnKF) proposed by Iglesias et al. [16]. We
assume an incoming boundary layer with a logarithmic profile corre-
sponding to a neutral surface layer with a roughness height of 0.3 m,
[17]. The non-dimensional velocity in the urban canopy is solely a
function of the incoming wind direction, hence we focus on inferring a
distribution for the inlet flow angle. Wind measurements from a nearby
weather station are used to investigate a prior distribution for the wind
direction. Subsequently a set of CFD simulations are used to construct
polynomial chaos expansions [18] for the quantities of interest, i.e. the
velocity vector throughout the urban canopy. These expansions serve as
a reduced order model to make the inverse approach computationally
affordable. The sensitivity of the inverse model to the locations of the
sensors, and to noisy and biased measurements, is tested to draw con-
clusions on the optimal placement of the sensors in the future experi-
mental campaign.

Previous studies on the use of inverse Bayesian techniques for
modeling the built environment have primarily focused on identifying
pollutant source characteristics [19–21]. The EnKF has also been used
to quantify and reduce turbulence model uncertainties in RANS simu-
lations of the flow over periodic hills [22]. The current study extends
the use of inverse methods in flow simulations of the built environment
to infer the incoming ABL, taking into account its natural variability.
The use of a polynomial chaos expansion surrogate model addresses
some of the concerns related to the cost of the data assimilation process
mentioned in Ref. [21]. The approach is therefore well suited for in-
creasing the practical use of CFD simulations with data assimilation and

uncertainty quantification in urban areas. Future extensions to the
framework could also leverage the EnKF to further improve confidence
in the results by compensating for the modeling errors and lack of flow
physics [23].

The remainder of the paper is organized in three sections. The fol-
lowing section introduces the data assimilation framework, along with
the set-up of the CFD simulations and the construction of the surrogate
model. In section 2, we first identify the optimal sensor locations for
data assimilation. Subsequently, we characterize the effect of noisy and
biased flow measurements and investigate the use of a multi-sensor
assimilation to mitigate the effect of inaccurate measurements and
numerical models.

2. Methodology

2.1. Proposed data-assimilation framework

The objective of the data-assimilation framework is to estimate the
boundary condition set by the incoming wind direction and velocity
solely based on local measurements of the 2D wind vector within the
modeled urban canopy. We first infer the incoming wind direction
based on the local flow direction in the urban canopy. Subsequently, we
use measurements of the local velocity magnitude to obtain the inlet
velocity magnitude. This second step uses the local reduced velocity,UR
obtained from the simulation. UR is the ratio between the local wind
speed (Usensor) and the reference velocity at the inlet, and it is only a
function of θinlet. Hence the following linear relation can be used to infer
the inlet velocity magnitude: =U U U θ/ ( )inlet sensor R inlet , once θinlet is in-
ferred. Throughout the remainder of the paper most of the analysis is
focused on data obtained on a horizontal plane at a height of 5m. This
height was selected to match the tripod height that will be used for the
ground level measurements during the experimental campaign [24].

Fig. 2 presents the iterative data assimilation framework to infer the
inflow wind direction. It is based on an ensemble Kalman [25] filter and
comprises four main steps:

1. Definition of a prior (first step) or updated (following steps) en-
semble of particles with the probabilistic distribution for the inlet
wind direction. The variability of the inlet conditions represents the
natural behavior of the ABL.

2. Compute the Reynolds averaged flow field at the locations where
experimental data is available for each particle, using a computa-
tional fluid dynamics or a surrogate model.

3. Compare the propagated ensemble to the data from the field mea-
surements.

4. Use a Bayesian updating procedure to minimize the difference be-
tween the experimental and the propagated state and update the
ensemble of inlet flow angles.

The following sections provide further information on each of these

Fig. 1. Numerical predictions of the flow field on Stanfords campus showing the different flow patterns for two different wind directions.
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