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A B S T R A C T

Real-time measurement of particulate matter (PM) is important for the maintenance of acceptable air quality.
The high cost of conventional instruments typically limits the number of monitoring sites, which in turn un-
dermines the accuracy of real-time mapping of sources and hotspots of air pollutants with sufficient spatial
resolution. In this study, a wireless network of low-cost particle sensors that can be deployed indoors was
developed. To overcome the well-known limitations of low sensitivity and poor signal quality associated with
low-cost sensors, a sliding window and a low pass filter were developed to enhance the signal quality. Utility of
the networked system with improved sensitivity was demonstrated by deploying it in a woodworking shop. Data
collected by the networked system was utilized to construct spatiotemporal PM concentration distributions using
an ordinary Kriging method and an Artificial Neural Network model to elucidate particle generation and ven-
tilation processes.

1. Introduction

Particulate matter (PM) is a routinely monitored air pollutant in
outdoor and indoor environments [1–3]. High PM2.5 exposure levels
tend to trigger cardiovascular disease and mortality via various me-
chanisms including pulmonary and systemic inflammation, accelerated
atherosclerosis, and altered cardiac autonomic function [4,5]. World-
wide, outdoor PM2.5 pollution accounts for 6.4 million deaths annually
[6]. Indoor PM, carrying allergens and endotoxins, may exacerbate
asthmatic symptoms [7]. Due to these adverse health effects, many
countries have enacted regulations in an effort to lower PM con-
centrations, and regulatory agencies commonly require long-term
measurements to monitor air quality [8,9]. The designated US En-
vironmental Protection Agency (US EPA) federal reference method
(FRM), gravimetric sampling, measures PM mass concentration by
collecting the particles on a filter for a set time in a high-volume air
sampler [10–12]. There are around hundreds of monitoring sites across
the country that provide the daily concentrations of total suspended
particles (TSP), PM10, and PM2.5. Using these data to generate a spa-
tiotemporal distribution map showing how the pollutants vary with
location and time aids exposure assessment and health effect studies. To
generate the spatiotemporal distribution on the basis of limited data

from scattered monitoring sites, researchers need to predict the pollu-
tant concentration at unsampled locations.

Geostatistical interpolation and land use regression (LUR) are
common methods to predict the spatiotemporal distribution in outdoor
atmospheric studies. Geostatistical interpolation (also called spatial
interpolation) characterizes the relationship between pollutant con-
centrations and their locations, and utilizes the relationship to predict
the pointwise pollution concentration. There are four general weighted
average algorithms for geostatistical interpolation: spatial averaging,
nearest neighbor, inverse distance weighting, and Kriging [13]. Among
the four algorithms, since Kriging produces the best linear unbiased
estimate of the pollution surface [14], it has become the most widely
used algorithm for predicting air pollution distribution [15]. Using
Kriging, Jerrett et al. [16] interpolated the PM2.5 concentrations from
42 monitoring sites and demonstrated that these concentrations are
relevant to ischemic heart disease. Kriged ozone concentrations have
been used for monthly exposure assessment in the southeastern United
States [17], and have been applied to correlate exposure with pediatric
asthma presentation rates [18]. LUR, the other predictive method, as-
sociates pollution data with multiple variables, including the wind field,
traffic count, land use, population, and emissions [19]. LUR has been
used to predict the PM concentration distributions across New York City
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and Los Angeles [20,21]. Neither of these predictive methods con-
sistently outperformed the other. The distributions they predicted may
vary according to their principles [13,22]. Furthermore, the scattered
monitoring sites limit the resolution and the accuracy of the spatio-
temporal distribution map, which will further undermine the con-
fidence of the spatiotemporal distribution.

Recently, advances in the low-cost particle sensor techniques have
altered the conventional data collecting and data mining processes.
Conventional gravimetric sampling is off-line and laborious, whereas
low-cost particle sensors offer adequate accuracy, are compact, and
require only modest maintenance. The networking capability of particle
sensors enhances the possibility of wider application. Laboratory eva-
luations have demonstrated that low-cost particle sensors operate with
high linear correlation to standard commercial instruments for fixed PM
sources [23–25]. In combination with other sensors and wireless com-
munication chips, low-cost particle sensors can be networked to collect
air quality data efficiently and conveniently. The data mining process of
the networked low-cost particle sensor is a trending topic. By dis-
tributing 8000 low-cost iSPEX (a smart phone add-on) sensors across
Netherlands, Snik et al. [26] obtained a map of aerosol optical thickness
with higher spatial resolution than conventional maps generated by the
satellite. In a similar study, Shinyei PPD sensors were deployed in Xi'an,
China, to determine the spatiotemporal variations of PM2.5 [27].
However, one shortcoming of low-cost particle sensors is their low
signal to noise ratio, which allows accurate measurements only under
higher concentration scenarios or after long periods of averaging to
increase data quality. To eliminate high-frequency noise and to accu-
rately represent the measurement data, digital filters were added to the
sensor system. Common digital filters include sliding window filter,
low-pass filter (e.g. finite impulse response (FIR) filter and fast Fourier
transform (FFT) filter), and model-based filter (e.g. Kalman filter)
[28–30]. The advantages of sliding window filter and low-pass filter are
model-independent, light computational weight, and specifically tai-
lored for filtering high frequency noises [28,31].

In addition to the conventional geostatistical models, such as or-
dinary kriging, machine-learning techniques were also previously used
for the spatial interpolation of environmental variables as a cost-ef-
fective method where monitoring resources are limited [32,33]. For
example, Chowdhury et al. [34] implemented Artificial Neural Net-
works (ANNs) for the spatial mapping of complex patterns of ground-
water arsenic levels based on sampling data at finite locations. They
demonstrated that the use of non-linear pattern learning techniques,
such as ANNs, could yield more accurate results than the ordinary
Kriging method. Antonic et al. [35] used neural networks to build
empirical spatio-temporal models for various climatic variables such as
temperature, relative humidity, precipitation, solar irradiation, and
evapotranspiration. In addition, ANN models were used to forecast
outdoor particulate matter concentrations such as PM10 and PM2.5

[36,37].
Apart from atmospheric measurements, low-cost particle sensors

can perform multi-point indoor measurements. Indoor air quality, re-
ferring to PM concentrations and trace gas concentrations, is critical to
human health, since a human being spends on average approximately
88% of their time inside buildings [38–43]. The application of low-cost
sensors and their networks enables sampling PM and trace gas under
various scenarios [44–47]. Generally, the exposure level estimated from
indoor or personal low-cost sensors is more accurate than the Kriging or
LUR predicted values from scattered fixed monitoring sites. Compared
to outdoor field measurements, indoor measurements are usually lim-
ited by confined space and room arrangements. It is common to neglect
the indoor spatiotemporal distribution and use a single-point mea-
surement to represent the whole room, which introduces errors to ex-
posure intake estimation [48]. The sensors' low price and the compact
size allow deploying multiple sampling points in households, which is
very helpful for understanding ventilation process and monitoring oc-
cupancy [49–51]. However, very few studies using networked sensor

systems reported the dynamic evolution of the particle concentrations
as a function of location and time. Rajasegarar et al. [52] conducted one
of such studies that reported the PM concentration distribution mapped
by networked low-cost particle sensors in a garage. Patel et al. [49]
deployed low-cost particle sensors in a household to monitor the
transport of particles produced from biomass burning. Leavey et al.
[53] implemented several wireless PM sensors, gas sensors, and tem-
perature sensors in an auditorium room and analyzed the energy con-
sumption of different operation modes. However, neither of these stu-
dies reported the spatial evolution of the PM concentration.

The focus of indoor air quality mapping should be different from
that of outdoor atmospheric studies. The scale of an atmospheric study
is obviously large, possibly also ranging from county to country in scale,
while indoor measurements are confined to several hundreds or thou-
sands of square feet. Due to these space limitations, indoor measure-
ments usually involve fewer than ten sampling locations, but the den-
sity (sampling locations/unit area) is high. In addition, there are no
boundary conditions for atmospheric measurements, but the PM con-
centrations at the boundaries of a room should be zero, since it is a
confined space and particles are scavenged at the wall. Additional
variables (e.g., traffic and land use) that can be incorporated in atmo-
spheric measurements are inapplicable for indoor sampling.
Furthermore, in Kriging and the LUR method, the PM concentration
distributions are considered steady and stable, hence yearly-average
concentrations are commonly used as inputs. For indoor measurements,
capturing instant emission events is of major interest. In general, spa-
tially depicting the dynamic evolution of the PM concentration with a
limited number of sensors in a confined space is the goal of deploying
low-cost sensors for indoor measurements.

In this study, a networked wireless particle sensor system coupled
with a sliding window filter and a low pass filter to enhance the sample
quality by increasing the signal to noise ratio, while preserving the time
resolution is presented. After calibrating the networked wireless sensor
system, its use is demonstrated by conducting spatiotemporal mea-
surements in a student woodworking shop to identify PM concentration
hotspots. Kriging interpolation and artificial neural network (ANN)
methods are used, and the pros and cons of each are compared. The
total exposure to PM of woodworkers is estimated from calculations
based on the predicted spatiotemporal PM concentration distribution.

2. Materials and methods

The networked wireless sensor system consists of multiple end de-
vices to monitor the PM concentration, and a base station that receives
the data from the sensors for further processing. For each end device, a
Sharp GP2Y1010AU0F (GP2Y, Sharp Corp., Osaka, Japan) PM sensor,
an Arduino Nano ATmega328 (Arduino, Arduino Inc., S.R.L, Italy), and
an XBee radio (Digi International Inc., Minnetonka, MN) were mounted
on a printed circuit board. The base station that collects and translates
the data package sent from the end devices integrates a Raspberry Pi 2
embedded computer (Adafruit Industries., New York City, NY) and an
XBee radio. The system and the major components are shown in Fig. 1.

2.1. Major components

The Sharp GP2Y measures a scattered light signal that is correlated
with aerosol concentration. When the infrared emitting diode inside the
Sharp GP2Y is powered with a square wave voltage with a 32 ms pulse
width, the particles passing through the testing location are illuminated
and the light is reflected towards a phototransistor. The light is re-
flected or scattered more at higher aerosol concentrations since more
particles alter the path of light. The infrared-sensitive phototransistor
converts the scattered light intensity into a voltage signal. An earlier
study [23] showered that the Sharp GP2Y demonstrates the highest
linearity against commercialized instruments among the low-cost par-
ticle sensors tested, and is stable under humidity and temperature
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