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a b s t r a c t

A simultaneous estimation of fin parameter “m” and thermal diffusivity “a” of a fin material is accom-
plished by conducting in-house unsteady experiments on a fin of constant area losing heat to still air by
natural convection. The material of the fin is mild steel and the surface is highly polished. The fin
protrudes from an aluminium base and beneath the aluminium base, a heater is provided to heat the fin.
Upon reaching steady state, the power is switched off, transient cooling takes place and the temperature
distribution for various time intervals is recorded using a data logger. The temperature varies along the
height of the fin and also with respect to time. Bayesian inference is then applied to statistically
determine the unknown parameters “m” and thermal diffusivity “a” simultaneously. Markov chain
Monte Carlo method (MCMC) is used for sampling the fin parameter “m” and thermal diffusivity “a” of
the material. The parameters are retrieved with and without MCMC using a wealth of temperatures
generated from experiments with minimum number of time instances. The usefulness of priors in
improving the estimates of parameters is investigated. The uncertainity in the form of standard deviation
of the parameters estimated, an inherent output of the Bayesian frame work is also reported.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Inverse heat transfer is a well known topic of interest for
researchers seeking to determine thermophysical properties,
transport properties and boundary heat flux. The necessity of such
an increased interest is to determine the cause for the obtained
effect which is not often times so trivial as there can be several
causes for the same effect. Inverse problems are encountered in
almost every branch of science and engineering. Standard heat
transfer problems i.e, direct or forward problems have well posed
conditions whereas inverse heat transfer problems are mostly ill
posed. For a standard well posed problem, the following condition
must be satisfied.

� The solution must exist.
� There must be an unique solution
� The solutionmust be stable even for small perturbations on the
input

The statistical assumptions made regarding the errors as
follows.

1. Errors are Gaussian and uncorrelated, as well as the measure-
ments and the parameters are independent.

2. The errors are additive, i.e., Yi ¼ Ti þ ˛i.
3. The error ˛ i has zero mean, E(˛i) ¼ 0.
4. The errors contains constant variance, s2i ¼ E[Yi � E(Yi)]2

¼ constant

Inverse problems are generally very sensitive to random errors
associated with experiments. If the number of parameters to be
retrieved increases, the difficulty in estimating them simulta-
neously dramatically increases. Fig. 1 shows a general depiction for
parameter estimation in inverse problems. Any inverse method-
ology should contain the forward model wherein the physics of the
experiment is modelled invariably as an ordinary/or partial differ-
ential equation subject to various boundary conditions and initial
conditions. The forward model is solved for guess values of the
input state vector x such as thermal conductivity k, specific heat Cp,
convective heat transfer coefficient h and emissivity. As far as heat
transfer is concerned, the output of a forward model is generally
the temperature distribution and this is denoted by Ysim. If Ysim is
a vector of the simulated temperatures and Ymeas is the data vector
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obtained from experiments, invariably the goal is to minimise the
L2 norm

Pn
i¼1ðYmeans;ieYsim;iÞ2. If the error is acceptable the

procedure is stopped, else the next sample of state vector, x is
chosen by the inverse method which can be a calculus based
method or stochastic based method. This process will continue till
the error is minimized to an acceptably low value. There are some
versatile and powerful methods to solve inverse problems that are
gradient based and a few of these are

� LevenbergeMarquardt algorithm
� Conjugate gradient method
� Conjugate gradient method with adjoint problem estimation
can also be done using global search methods like

� Genetic algorithms
� Simulated annealing
� Bayesian inference with incorporation of priors coupled with
a suitable sampling strategy (direct minimization of L2 norm
not done here)

Stochastic based methods estimate the mean of the parameters
together with the uncertainity (standard deviation) associatedwith
estimates. The problem of converging to local minima is generally
encountered in calculus based methods and this can be avoided in
stochastic methods. Bayesian inference is a technique based on the
Baye’s theorem which contains the inherent quality of incorpo-
rating prior knowledge about the parameters to be estimated. This
offers the greatest advantage in so far as estimation is concerned.
The MCMC method within the Bayesian framework of statistics is
a powerful methodology for estimation of parameters.

2. Literature survey

Published literature in the area of inverse heat transfer is large.
Beck et al. [1] gives a basic understanding of modelling and solving
the inverse heat conduction problems. Orlande [2] has given
a comprehensive study of inverse problems in the diversifiedfield of
heat transfer and has discussed about a number of studies published
in this area in recent years. Huang and Yan [3] solved a one dimen-
sional transient conductionproblemand estimated the temperature
dependent thermal conductivityand specific heatnumerically using
the conjugate gradient method. Ji et al. [4] used a recursive least-
squares algorithm for the estimation of surface heat flux of inverse
heat conduction problem using experimental data. Dowding and
Blackwell [5] discussed the measurement of thermal properties of
solids and emphasized the importance of experimental design. They
estimated the thermal conductivity and volumetric heat capacity
from two dimensional transient heat conduction. Blackwell et al. [6]
estimated the thermal conductivity of 304 stainless steel using
measurements and discussed the sensitivity factors associatedwith
it. Monde and Mitsutake [7] estimated thermal diffusivity using an
inverse solution for the one dimensional heat conduction equation.
The numerical prediction of the estimation was validated with
experiments. With the same procedure they simultaneously esti-
mated thermal conductivity and thermal diffusivity numerically.
Chen et al. [8] applied a hybrid numerical algorithm of the Laplace
transform technique with the least-squares scheme to predict the
unknownsurface temperatureof two-sidedboundaryconditions for
two-dimensional inverseheat conductionproblems. Boudenneet al.

Nomenclature

Ac cross sectional area of the fin, m2

As surface area of the test plate, m2

Fo cell Fourier number (aDt/Dx2)
h convective heat transfer coefficient, Wm�2K�1

kf thermal conductivity of mild steel, Wm�1K�1

L length of the fin, m
Nu Nusselt number, h L/kf
p perimeter of the fin, m
P power, W
PPDF posterior probability density function
Q heat input, W
RMSE root mean square error
SD standard deviation of convective heat transfer

coefficient (Wm�2K�1) or thermal conductivity
(Wm�1K�1) as the case may be

Std.Er. standard error
T temperature, K
Tb temperature at the base, K
TN ambient temperature, K
v voltage, Volt

Greek symbols
DT temperature difference, ðTeTNÞ, K
mp mean of Gaussian prior for heat transfer coefficient

(Wm�2K�1) or thermal conductivity (Wm�1K�1) as the
case may be

F state vector
f non dimensional temperature,

T � TN
Tb � TN

sp standard deviation of Gaussian prior for heat transfer
coefficient Wm�2K�1 or thermal conductivity Wm�1K�1

q temperature excess, TeTN, K
x non-dimensional length, x/L

Subscripts
b base
end tip
ini initial
meas measured temperature distribution
sim simulated temperature distribution
N ambient

Fig. 1. General depiction for a parameter estimation problem.
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