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a b s t r a c t

This paper extends the definition of the one sided radiation impedance of a panel mounted in an infinite
rigid baffle which was previously used by the authors so that it can be applied to all transverse velocity
wave types on the panel rather than just to the possibly forced travelling plane transverse velocity waves
considered previously by the authors. For the case of travelling plane waves on a rectangular panel with
anechoic edge conditions, and for the case of standing waves on a rectangular panel with simply sup-
ported edge conditions, the equations resulting from one of the standard reductions from quadruple to
double integrals are given. These double integral equations can be reduced to single integral equations,
but the versions of these equations given in the literature did not always converge when used with
adaptive integral routines and were sometimes slower than the double integral versions. This is because
the terms in the integrands in the existing equations have singularities. Although these singularities
cancel, they caused problems for the adaptive integral routines. This paper rewrites these equations in a
form which removes the singularities and enables the integrals in these equations to be evaluated with
adaptive integral routines. Approximate equations for the azimuthally averaged one sided radiation
impedance of a rectangular panel mounted in an infinite baffle are given for all the cases considered in
this paper and the values produced by these equations are compared with numerical calculations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The acoustical radiation impedance of one side of a finite rect-
angular panel mounted in an infinite rigid baffle is of importance
for the prediction of sound insulation [1e5], sound absorption
[1,6e8], sound directivity [9] and sound scattering. It occurs natu-
rally when variational techniques are used to solve these phe-
nomena [1,2,7,8]. The normalized real part of the acoustical
radiation impedance of one side of a finite rectangular panel
mounted in an infinite rigid baffle is also the panel's one sided
acoustic radiation efficiency.

The authors [10e12] have recently defined the radiation
impedance of a plane panel mounted in an infinite plane baffle as
the average of the specific acoustic impedance over the surface of
the rectangular panel when a possibly forced plane transverse ve-
locity wave is propagating on the surface of the rectangular panel. It
was assumed that the edges of the panel were anechoic. This is the

appropriate assumption for a forced wave, because after the forced
wave is reflected at the edges of the panel, it propagates with the
free wave number of the panel rather than with the forced wave
number and hence has a different radiation impedance unless the
incident wave was also freely propagating.

This definition works because the possibly forced plane wave
has the same root mean square (rms) transverse velocity over time
at all points of the panel. When the radiation impedance of other
wave types on the panel, such as standing waves, is considered, this
definition breaks down because the rms transverse velocity over
time will possibly differ over the panel and may be zero at some
points. Where the rms transverse velocity over time is zero, the
specific acoustic impedance will be infinite and its average over the
panel may not be finite. This paper gives a definition of the radia-
tion impedance of a transverse wave on a panel which gives the
same result for a travelling plane wave as the definition previously
used by the authors.

The definition of radiation impedance involves a quadruple in-
tegral. For a rectangular panel with a travelling plane wave or for a
mode of a simply supported panel, this quadruple integral can be
reduced to a double integral using a standard technique [1,13e15].
In both these cases this double integral can be reduced to a much
more complicated single integral. However when the single
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integral equations for real part of the impedance for the travelling
plane case [15] were evaluated using adaptive integral routines, the
integral did not converge when the wave number of the travelling
transverse plane velocity wave was equal to the wave number in
the fluid medium into which the panel was radiating. Also, at low
frequencies, the single integral evaluation was slower than the
double integral evaluation. These problems are due to singularities
in terms of the integrand. Although the singularities do cancel out
each other, they do cause problems for the adaptive integral rou-
tines. Singularities also appear in the single integral formulae for
the real part of the impedance for the simply supported mode case
[13]. This paper rewrites these integrands in a form that removes
the singularities, so that the adaptive integral routines work
correctly and effectively. This paper also derives the single integral
formulae for the imaginary part of the impedance for both the
travelling wave case and the simply supported mode case. Most
previous papers only treat the travelling plane wave case or the
simply supported mode case. This paper gives a uniform treatment
of both cases.

Evenwith one less level of integration, the numerical evaluation
can be fairly time consuming, especially as the products of thewave
number of the transverse velocity wave in the panel and the wave
number of the sound in air with the half side lengths of the panel
become large. Thus, this paper also gives approximate formulae and
compares their output with the numerical calculations for the
azimuthally averaged one sided impedance of a square panel
mounted in an infinite rigid baffle. Approximate formulae are also
given for the case when the waves in the panel are excited by a
diffuse sound field which is incident on one side of the panel.

When a panel is actually excited, there are usually at least two
types of transverse vibrational fields excited in the panel. One is a
freely propagating resonant field and the other is a forced non-
resonant field or a near field. Equations are given for calculating
the impedance of a panel in an infinite baffle which is excited by an
incident diffuse sound field, by transverse point forces or by
transverse line forces.

This paper also examines the difference in radiation impedance
between different types of waves. At first sight, it is surprising that
there are differences in some cases between the radiation imped-
ances of travelling plane waves and simply supported modes on a
rectangular isotropic panel, because the simply supported modes
can be expressed as a sum of travelling waves. The reason for the
differences are that one wave on the panel can alter the impedance
experienced by another wave. This also applies to the real part of
the normalized radiation impedance of different modes on a panel,
but Xie et al. [16] have shown that these modal interactions cancel
out when the position of the transverse excitation point is averaged
over the surface of the panel. The authors suspect that a similar
cancellation of the interactions between different travelling waves
or simply supported modes occurs when azimuthal averaging or
incident diffuse field averaging is used. This is because the results of
such averaged results have proved useful in making acoustical
predictions. Such cancellation does not always occur when the
travelling plane waves are summed to form a mode because the
relative phase of the travelling planewaves is fixed by the boundary
conditions of the panel. Hence these differences in impedance
survive the azimuthal averaging.

2. Definition of radiation impedance

In this paper, the sinusoidal variationwith time is assumed to be
proportional to exp (jut), where u is the angular frequency, t is the
time, j is the square root of �1. It should be noted that the
assumption of exp (-jut) for the sinusoidal variationwith time gives
the opposite sign for the imaginary part of the impedance. The

impedances in this paper are normalized by dividing by the char-
acteristic impedance of the fluidmedium Zc, which is the product of
the ambient density of the fluid medium r0 and the speed of sound
in the fluidmedium c. Note that root mean square (rms) amplitudes
rather than peak amplitudes are used in this paper.

Consider a plane surface area S whose area is also denoted by S,
mounted in an infinite rigid plane baffle in the x-y plane z ¼ 0, in
which a two dimensional transverse velocity wave is propagating.
The rms transverse velocity of the wave over the surface area of the
panel in the positive z-axis direction is u (r0) where r0¼(x0,y0,z0) is
the position on the panel. The sound pressure in the fluid medium
on the positive z side of the baffle at position r1¼(x1,y1,z1) is given
by the Rayleigh integral (See Eq. (2.4) of [17])

pðr1Þ ¼ jkZc ∬
S
uðr0Þguðr1; r0Þdr0 (1)

where gu is the Green's function for a point source on an infinite
rigid baffle which is given by

guðr1; r0Þ ¼ expð � jkrÞ=ð2prÞ (2)

where

r ¼ jr1 � r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0Þ2 þ ðy1 � y0Þ2 þ ðz1 � z0Þ2

q
(3)

and k is the wave number in the fluid medium into which the wave
is radiating on the positive z side of the baffle.

The sound power W radiated by one side of the panel is

W ¼ Re

2
4∬

S
pðr1Þu*ðr1Þdr1

3
5

¼ Re

2
4jkZc ∬

S
∬
S
uðr0Þu*ðr1Þguðr1; r0Þdr0dr1

3
5: (4)

It is desirable to be able to write the sound powerW radiated by
one side of the panel as

W ¼ Re
h
zZcS

D
u2
Ei

(5)

where

D
u2
E
¼ ∬

S
juðr0Þj2dr0

,
S ¼ ∬

S
uðr0Þu*ðr0Þdr0

,
S (6)

is the mean square transverse velocity of the plane surface area S.
Hence it is convenient to define the normalized radiation imped-
ance z of a wave on the surface S as

z ¼ jk∬
S
∬
S
guðr1; r0Þuðr0Þu*ðr1Þdr0dr1

,�
S
D
u2
E�

: (7)

If the transverse velocity of the plane wave on the surface S in
the positive z-axis direction is

uðr0Þ ¼ u0 expð � jkb:r0Þ (8)

where kb ¼(kx,ky,0) is the wave number vector of the wave and u0 is
the complex amplitude of the wave, thenD
u2
E
¼
���u0���2 (9)

and
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