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Abstract

The heat transfer in a liquid film driven by a horizontal sheet is examined. The stretching rate and temperature of the sheet vary with time. The
boundary layer equations for momentum and thermal energy are reduced to a set of ordinary differential equations by means of an exact similarity
transformation. Numerical solutions of the resulting four-parameter problem are provided. It is observed that the variation of the sheet temperature
with distance and with time has analogous effects both on the free surface temperature and the heat transfer rate (Nusselt number) at the sheet.
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1. Introduction

Both the flow and heat transfer in a viscous fluid over a
stretching surface have been extensively investigated during the
past decades owing to its importance in industrial and engi-
neering applications. Examples are heat treatment of materials
manufactured in an extrusion process and a casting process of
materials. Cooling of stretching sheets is needed to assure the
best quality of the material and requires dedicated control of the
temperature and, therefore, knowledge of flow and heat transfer
in such systems.

Motivated by the process of polymer extrusion, in which the
extrudate emerges from a narrow slit, Crane [1] was the first to
examine the semi-infinite fluid flow driven by a linearly stretch-
ing surface. Later on several authors [2—-10] studied various
aspects of this problem, such as the heat, mass and momen-
tum transfer in viscous flows with or without suction or blowing
through the sheet. These studies all considered the steady flow,
heat and mass transfer in a semi-infinite fluid layer driven by
a continuous stretching sheet. Wang [11], on the other hand,
investigated the hydrodynamic behavior of a finite fluid body,
i.e. a thin liquid film, driven by an unsteady stretching sur-
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face. He introduced a similarity transformation to reduce the
time-dependent momentum equation to a third-order non-linear
ordinary differential equation (ODE) with an unsteadiness pa-
rameter S. For positive values of S, Wang [11] found that there
exists no solution of the hydro-mechanical problem if § falls
outside the range [0, 2], whereas the dimensionless film thick-
ness is a monotonically decreasing function of S within this
parameter interval. He also observed that the thin-film prob-
lem reduces to Crane’s [1] original problem of a semi-infinite
fluid body when the unsteadiness parameter S approaches zero.
On the other hand, the film thickness becomes infinitesimal
small when S tends to the limit 2. Andersson et al. [12] ex-
tended Wang’s [11] problem and analyzed the accompanying
heat transfer in the liquid film driven by an unsteady stretching
surface. They discussed the physical mechanisms that govern
the observed thermal characteristics for various Prandtl num-
bers and different values of the unsteadiness parameter S. More
recently, Wang [13] reconsidered exactly the same problem as
in Ref. [12] and provided an analytic series solution by means
of the homotopy analysis method. The potential influence of
thermo-capillarity on the flow and heat transfer was examined
by Dandapat et al. [14].

In the present study we aim to generalize the analysis by An-
dersson et al. [12] of the thermal characteristics of a liquid film
driven by an unsteady stretching surface. Here, we consider a
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more general form of the prescribed temperature variation of
the stretching sheet than that considered in Ref. [12]. Exact
similarity solutions can nevertheless be achieved. Since closed-
form analytical solutions are not readily available, the resulting
non-linear ODEs are integrated numerically. Temperature pro-
files and heat transfer rates at the surface (i.e. Nusselt number)
will be presented for representative values of the unsteadiness
parameter S, the two sheet-temperature characteristics r and m,
and the Prandtl number P.

2. Problem formulation

Let us consider the thin elastic sheet that emerges from a nar-
row slit at the origin of the Cartesian coordinate system shown
in Fig. 1. The continuous sheet aligned with the x-axis at y =0
moves in its own plane with a velocity U; (x, ¢) and the temper-
ature distribution 7 (x, #) varies both along the sheet and with
time. A thin liquid film with uniform thickness /4 (¢) rests on the
horizontal sheet. The governing time-dependent equations for
mass, momentum and energy conservation are given by
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where u and v are the velocity components in the x and y di-
rections, respectively, and T is the temperature. We assume that
all fluid properties are constant. Here, p is the density, u is the
dynamic viscosity and k is the thermal conductivity of the in-
compressible fluid. Thus, the kinematic viscosity is v = u/p
and the thermal diffusivity is ¥ = k/pc, where c, is the heat
capacity at constant pressure.

In the derivation of the governing equations (1)—(3), the con-
ventional boundary layer approximation has been invoked. This
is justified by the assumption that the film thickness / is sub-
stantially smaller than a characteristic length scale L in the
direction along the sheet. Mass conservation (1) then implies
that the ratio v/u between the two velocity components is of the
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Fig. 1. Physical configuration and coordinate system.

order h/L « 1. Similarly, streamwise diffusion of momentum
and thermal energy is of the order (/L)% smaller than the cor-
responding diffusion perpendicular to the sheet. For this reason,
the streamwise diffusion terms have been neglected in Egs. (2)
and (3). The mathematical character of the partial differential
equations is thereby changed from elliptic to parabolic, which
in turn effects the number of boundary conditions required. The
appropriate boundary conditions for the above boundary layer
equations are
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where h(t) is the free surface elevation of the liquid film, i.e.
the film thickness. The first parts of Eq. (5) reflect the absence
of viscous shear stress and heat flux at the free surface, while
the last part is a kinematic free-surface condition.

The fluid motion within the liquid film is caused only by the
viscous shear arising from the stretching of the elastic sheet.
The stretching velocity U (x,t) is assumed to be of the same
form as that considered by Wang [11], Andersson et al. [12]
and Wang [13]:
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where both b and ¢ are positive constants with dimension recip-
rocal time. Here, b is the initial stretching rate, whereas the
effective stretching rate b/(1 — ct) is increasing with time. In
the context of polymer extrusion the material properties and in
particular the elasticity of the extruded sheet may vary with time
even though the sheet is being pulled by a constant force. The
dimensionless ratio S = ¢/b eventually became the only para-
meter in Wang’s analysis, which in the limit S — 0 reduces
to the steady-state problem due to Crane [1]. It should be em-
phasized that the initial stretching rate b does not represent an
externally imposed time scale, as incorrectly argued by Vleg-
gaar [3] and Kumari et al. [9]. With unsteady stretching (i.e.
¢ #0), however, c~! becomes the representative time scale of
the resulting unsteady boundary layer problem. The adopted
formulation of the velocity sheet velocity U, (x,t) in Eq. (6)
is valid only for times # < ¢! unless ¢ = 0.

The temperature of the surface of the elastic sheet is sim-
ilarly assumed to vary both along the sheet and with time, in
accordance with:
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Here, Tj is the fixed slit temperature at x = 0 (except for r = 0)
and Tt is a reference temperature which will be taken as
Tief = Ty in the present study. The constant of proportionality
d is assumed to be positive with dimension (length®>~" time ™).
The power indices r and m enable us to examine a variety of
different temperature variations. With r > 0, the sheet temper-
ature decreases as x” with the distance from the slit. Similarly,
for m > 0 the sheet temperature at a fixed location x is reduced
with time in proportion to (1 — ct)™™. The rather general tem-
perature variation (7) represents a generalization of the sheet
temperature considered by Andersson et al. [12] and Wang [13]
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