
Science of Computer Programming 4 (1984) 141-157 
North-Holland 

141 

PARTIAL CORRECTNESS: THE TERM-WISE APPROACH 

Stefan SOKOLOWSKI 
Institute of Mathematics, University of Gdan’sk, ul. Wira Stwosza 57, SO-952 Gdarisk, Poland 

Communicated by D. Bjtimer 

Received June 1982 

Revised November 1983 

1. Introduction 

The need for new notions of partial correctness has emerged from studies on 
cooperation of applicative and imperative elements of programs. Whereas the latter 
can be neatly specified and verified by the usual inductive assertions, there is no 
apparent way to apply the same approach to the former. The obvious reason is that 
functions are not called in order to change states-the realm that assertions can 
capture. On the other hand, while the lambda-calculus is perfectly suited to functions 
and values, its treatment of imperative elements of programs is hardly satisfactory. 

This paper puts forward a natural way to incorporate functions into a programming 
logic built along the lines of Hoare’s axiom system (see [6]); which we call term-wise 
correctness. 

The first reason to consider the correctness of programs with respect to terms 
rather than predicates is a simple observation that the classical Hoare’s logic, 
although complete, is too weak to specify programs. Even if we know that a command 
c is correct with respect to predicates 

n20 and x=n! 

we still cannot claim that c computes factorials since c might update n instead (e.g. 
c might be: n := 0; x := 1). One way out is to carefully distinguish between variables 
and constants. Another is Manna’s and Pnueli’s binary postassertions method (see 
[8]). Still another, put forward in this paper, is to allow 

where t, and tz are terms and c is a command, to mean 

the value of tz after execution of c is, 
if defined, equal to the value of t, before 

Now {n!} c {x} means that c assigns to x the factorial of the initial value of n. 

0167-6423/84/S3.00 @ 1984, Elsevier Science Publishers B.V. (North-Holland) 



142 S. Sokolowski 

Although the idea behind this new notion of partial correctness is so different, 
the actual correctness calculus is very close to the classical Hoare’s logic. Backward 
substitution and loop invariants work in a standard way-but now, expressions are 

substituted for variables in terms rather than in predicates and loop invariants are 
terms rather than predicates. 

In the world of recursive procedures and functions the classical Hoare’s logic, 
with the imposed distinction between constants and variables, becomes confusing. 
An assertion inside a procedure body that relates a local variable to a constant 
should at the same time relate other incarnations of the same variable on different 
levels of recursion to other constants. Presumably the simplest treatment is the one 

described by Apt in [l]. For recursive procedures with local variables one needs 6 
additional inference rules and 1 axiom. 

O’Donnell in [9] gave a critical study of existing inference systems for user defined 
functions. O’Donnell’s conclusion is that all known inference systems (including 
one of his own) are either unsound or impractical in that they do not allow for a 
correctness proof to reflect the structure of the user’s program. 

I believe that the inference system presented here escapes O’Donnell’s criticism. 
It is, moreover, relatively simple. It contains at most one rule for each syntactic 
construct plus three consequence rules; the proofs of correctness do not involve 
such unwelcome concepts as explicit locations, stacks for procedures and environ- 
ments. It can deal conveniently with local variables and with parameters called 
either by value or by value-result. The inference system is provably sound and 
Cook-complete (cf. [3]). However, not to leave the false impression that this system 
has the best of all worlds, it cannot treat nested declarations of procedures, pro- 
cedural parameters, side effects and pointers. 

2. Algebra of partial functions 

On the semantic level, all elements of programs and their descriptions boil down 
to partial functions: commands yield functions from states to states; expressions, 
from states to values; procedures, from tuples of values to tuples of values; and 
assertions, from states to logical values. If we can express partial correctness in a 
simple theory of partial functions, the applicative elements will fit there as well. 

Fundamental operations over partial functions are composition, tupling, restric- 
tion, choice and iteration. 

Composition of functions f and g is defined by 

(note that f is applied first). 
Tupling of partial functions fi, . . . , fn is a function into the Cartesian product of 

their destinations defined as follows: 



Download English Version:

https://daneshyari.com/en/article/6700395

Download Persian Version:

https://daneshyari.com/article/6700395

Daneshyari.com

https://daneshyari.com/en/article/6700395
https://daneshyari.com/article/6700395
https://daneshyari.com

