Building and Environment 81 (2014) 404-409

Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

An innovative test method for evaluating the critical moisture level for mould growth on building materials

SP Technical Research Institute of Sweden, Box 857, SE-501 15 BORÅS, Sweden

A R T I C L E I N F O

Article history: Received 7 February 2014 Received in revised form 30 June 2014 Accepted 2 July 2014 Available online 24 July 2014

Keywords: Mould Relative humidity Temperature Building materials Laboratory test

ABSTRACT

The critical moisture level (RH_{crit}) for mould growth, that is the lowest relative humidity (RH) at which mould can grow, varies between different materials. The factors that most affect mould growth, RH and temperature, also vary in different parts of a building. One way of preventing the growth of mould in buildings is therefore to choose building materials that can withstand the expected conditions, materials that have a higher critical moisture level than the highest expected RH. It is thus crucial that data are available to allow the correct choice of materials to be made. In this paper an innovative laboratory test method for determining the RH_{crit} of a material is described and discussed. The results from testing of a material according to the method gives information to make the correct choices. The method is developed based on the results of a variety of laboratory studies and has been validated by field studies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mould growth on building materials is the consequence of an interaction between environmental factors (temperature and humidity), material properties and the characteristics of the mould fungi. In general, the availability of water in the material is regarded as the crucial element for growth to occur. It is then the surface of the material that is of interest, since the mould fungi are growing at the surface of solid material. At equilibrium, the moisture at the surface is the same as in the surrounding air. Generally, the higher the moisture availability, the higher is the risk for mould growth. However, building materials differ in their mould resistance; some materials can withstand high moisture conditions better than others. Also, while some materials are susceptible to mould growth at low levels of humidity, down to 75% RH, others can tolerate high moisture levels, above 95% RH, without mould growing on them [8,12,15,16]. There is a theoretical level of RH for each material, above which mould growth is possible, the critical moisture level for mould growth. This is dependent on the temperature; the lower the temperature, the higher is the critical moisture level [12].

Traditionally, mould resistance is evaluated by exposing test specimens of the material to spores of mould fungi and then incubating the specimens at a relative humidity and temperature

* Corresponding author. E-mail address: pernilla.johansson@sp.se (P. Johansson). that are favourable to mould growth. The principle behind the test is that most fungi grow well at high RH and if the material is such as to allow mould growth, then it should also grow on the test pieces in the laboratory. Several standardised test methods are available; some are presented in Ref. [2] and in Table 1 of this paper. While being able to discriminate between materials in a general way, these test methods do not provide any information on how a material will perform in a building where the moisture conditions are not that high. It may, therefore, be possible to use materials that have been subject to mould growth in the tests in constructions where the moisture load is lower.

In this paper, a test method [18] is discussed. The <u>Critical</u> <u>Moisture Level method</u>, for evaluating the critical moisture level of a material. The method is presented in Ref. [10]. Instead of completely excluding the use of certain materials that have failed existing mould resistance tests, the CML method can differentiate mould susceptibility at several different moisture levels. With the introduction of this newly developed and validated method, the field for testing materials' susceptibility to mould has widened. It also makes possible a practical application for use in situations with known lower RH. This in turn provides the basis for material choice in designs where moisture and temperature conditions are known.

The CML method is a result of a range of tests conducted in the laboratory over several years. These tests have been based on routines from several of the existing testing methods; with some

Table 1

Comparison of some variables for the CML method for testing critical moisture level and five methods for estimating mould resistance.

		The CMLmethod SP Met 4927	ASTM C1338	BS_1982: Part 3: 1990	ASTM G 21-09	ISO 846:1997	MIL-STD 810 G***
Material		Building materials	Insulation materials and their facings	Panel products, made of or containing materials of organic origin	Synthetic polymeric materials	Plastics	A variety of materials commonly used in the construction of military materiel
Purpose of the test		Critical moisture level	Mould resistance	Mould resistance	Mould resistance	Mould resistance	Mould resistance
Specimen	Size	$50 \times 100 \text{ mm}$	Surface area not defined	$40 \times 40 \text{ mm}$	50 × 50 mm/dia. 50 mm/length 76 cm (rods)	Not defined	Not defined
	Number of test specimens	7	3	Minimum 3	3	5	Not defined
Inoculum	Number of species	6	5	7	5	5	5
	Spore solution	Yes	Yes	Yes	Yes	Yes	Yes
	Concentration of spores	10 ⁶ spores/ml	$10^6 \pm 200,000$ spores/ml	Not specified	10 ⁶ ± 200 000 spores/ml	10 ⁶ spores/ml	$10^6 \pm 2\%$ spores/ml
	Inoculation methodology	Spraying	Spraying	Spraying	Spraying	Spraying or pipetting	Spraying
	Amount of solution	0.4 ml	0.5 ml	0.5 ml	Until surface is moistened	0.1	Not specified
	Number of spores/cm ²	8000	<i>(a)</i>	(b)	(c)	<i>(a)</i>	(a) and (c)
Incubation	Temperature	22 ± 1 °C	30 ± 2 °C	24 ± 1 °C	28–30 °C	24 \pm 1 °C or 29 \pm 1 °C	30 ± 1 °C
	RH	$80 \pm 2.5\%$	95 ± 4%	Not specified	>95%*	>95%*	At least 90% but
		$85 \pm 2.5\%$					less than 100%
		$90 \pm 2.5\%$					
		$95 \pm 2.5\%$					
	Incubation environment	Recording of	No	No	Automatic recording	No	Record chamber
	control	temperature and			of wet and dry-bulb		temperature and
		relative humidity			temperature		humidity versus time
		every 10 min			recommended		
	Incubation time	12 weeks	Min 28 days	4 weeks	28 days	4 weeks or longer	28 days or up to 84 days
	Storage of suspension	Must be used the	28 days at	Must be used the	Not more than	6 h	$6 \pm 4 ^{\circ}\text{C}$ for not more
		same day	6 ± 4 °C**	same day	4 days at 3–10 °C		than 14 days
Analysis	Method	40× magnification	40× magnification	Hand lens $10 \times$ or	Microscope used only	Visible effect,	Visible effects
			with low angle light	microscope $10 \times -50 \times$	to confirm growth	microscope (×50)	
					less than 10%	if necessary	
	Assessment	5-point rating scale	No rating scale	6-point rating scale	6-point rating scale	5-point rating scale	5-point rating scale and
				based on percentage	based on percentage	based on % of surface	analysis of species
				coverage	coverage	with growth	
Interpretation of results		Critical moisture	Growth compared to	Calculate the notional	No pass or fail criterion	Depending on rating	No guidance
		level reached	reference material;	mean ratings. No pass		of growth, material	
		in when there is	if bigger on test specimen,	or tail criterion		is classed as fungistatic,	
		established growth	considered to have failed.			containing small	
		on at least two	If no growth is criterion,			amounts of nutrients	
		test specimens	any growth on any test			or is not resistant	
			piece considered a failure			to fungal attack	

(a) Cannot be calculated since the area of test specimen is unknown, (b) Cannot be calculated since the concentration of spores in the suspension is unknown, (c) Cannot be calculated since the volume of spore suspension is unknown, *specimens are placed on solidified nutrient salt agar and RH is according to ISO 846 > 95%, ** or until the viability test indicates poor growth or until growth appears in the sealed storage bottle, *** although this method is not specified for testing building materials, it is useful and often used for this purpose.

Download English Version:

https://daneshyari.com/en/article/6700414

Download Persian Version:

https://daneshyari.com/article/6700414

Daneshyari.com