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a b s t r a c t

The paper describes the application of a combined neuro-fuzzy model for indoor temperature dynamic
and automatic regulation. The neural module of the model, an auto-regressive neural network with
external inputs (NNARX), produces indoor temperature forecasts that are used to feed a fuzzy logic
control unit that simulates switching the heating, ventilation and air conditioning (HVAC) system on and
off and regulating the inlet air speed. To generate an indoor temperature forecast, the NNARX module
uses weather parameters (e.g., outdoor temperature, air relative humidity and wind speed) and the
indoor temperature recorded in previous time steps as regressors. In its current state, the fuzzy controller
is only driven by the indoor temperature forecasted by the NNARX module; no variations in indoor heat
gains or occupants’ clothing and behavior were considered for driving the controller.

The main goal of this paper is to demonstrate the effectiveness of the hybrid neuro-fuzzy approach and
the importance of efficiently designing the temperature forecast model, especially with respect to the
selection of the order of the regressor for each of the external and internal parameters used. Therefore, a
differential entropy-based method was applied in this study, which provided good forecasting perfor-
mances for the NNARX model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Considering that we spend more of our time indoors as we
become more affluent, over the last few decades, the problem of
indoor air quality in non-industrial environments (particularly in
dwellings and offices) has gained significant importance in relation
to the effects on human health. In fact, it is estimated that during a
normal weekday (excluding holidays), we now spend over 90% of
our time indoors [1]. The air quality in working environments,
dwellings and open space urban environments, is increasingly
perceived by the public as one determinant of quality of life.
Moreover, poor indoor comfort has direct effects on user produc-
tivity and indirect effects on building energy efficiency [2,3].

Temperature control represents one of the strategies to attain
individual comfort in indoor environments, although temperature
is only one of the factors affecting the thermal comfort level. ISO
regulation 7730 defines thermal comfort as “the condition of mind
that expresses satisfaction with the thermal environment and is

assessed by subjective evaluation” [4]. Moreover, the ANSI/ASHRAE
55-2010 standards define the thermally acceptable environmental
conditions for the occupants of indoor environments and suggest
temperatures1 and airflow rates in different types of buildings and
different environmental circumstances [5].

The operative temperature intervals vary by indoor location
type. ASHRAE suggests temperature ranges and airflow rates in
different types of buildings and different environmental conditions.
For example, for a single office in a building (with an occupancy
ratio per square meter of 0.1) in the summer, the suggested tem-
perature range is between 23.5 and 25.5 �C; the airflow velocity is
recommended to be 0.18 m/s. In the winter, the recommended
temperature is between 21.0 and 23.0 �C with an airflow velocity of
0.15 m/s [6].

An index called the predictedmean vote (PMV)was proposed by
Fanger [7] to predict the average vote of a large group of people on
the thermal sensation scale. It depends on six factors: metabolic
rate, clothing insulation, air temperature, humidity, air velocity, and
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1 Typically, the standard for thermal comfort is defined by the operative tem-
perature, which is the average of the dry-bulb air temperature and the mean
radiant temperature at a given place in a room.
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mean radiant temperature. The PMV represents a subjective
quantification of the comfort sensation of the occupants in indoor
environments. Other variations of the PMV, e.g., the PMVNV [8] and
the PMV(SET*) [9], have also been developed. These variations are
more appropriate for situations in which only natural ventilation
(no air conditioning) is used.

The utilization of conventional approaches to assure indoor
thermal comfort in buildings (e.g., on-off devices and timers with
set temperatures, which do not vary dynamically with the tem-
perature in the monitored thermal zone) causes significant energy
consumption. Liu et al. [10] and Stoops [11] showed that guaran-
teeing thermal comfort can lead to high energy consumption,
especially if an optimal combination of the various influential
variables (i.e., air temperature, air velocity, air humidity and radiant
temperature) is not achieved. In contrast, they demonstrated that
extreme energy saving measures can act to the detriment of the
thermal comfort, causing negative effects on human health.

Therefore, a correct identification of the relationship between
environmental parameters and energy requirements linked to
thermal comfort preservation is extremely important. Weather
conditions certainly have an influence on this relationship [12e14].
However, they are not the only influential elements because in-
ternal heat gains, thermal insulation, natural ventilation, air infil-
tration and behavior of the occupants also play an important role,
especially in hot and humid climates [15]. Not surprisingly, in terms
of electricity consumption, total building energy consumption over
the last few years was second only to the industrial sector in Sicily
(Italy) [14], with industrial activities having high refrigeration
needs playing an important role [16,17]. Moreover, in densely built
areas, the high energy consumption of summer air conditioning
and the consequential emissions to the atmosphere are certainly
enhanced by the well-known urban heat island (UHI) phenomenon
[18e20], which increases building cooling loads (especially during
peak hours) and reduces the efficiency of air conditioning appli-
ances [21]. Furthermore, the UHI also enhances the heat release
during night hours (due to the high thermal inertia of construction
materials), thus further increasing the required energy demand for
cooling. It is therefore apparent that an appropriate temperature
and humidity control strategy is important to improve the energy
efficiency of a building-HVAC integrated system, still guaranteeing
thermal comfort conditions for building occupants [22].

In this paper, the effect of air temperature and other weather
parameters (e.g., relative humidity and wind speed) are considered
to train a neural network model aimed at forecasting indoor tem-
perature to feed a fuzzy controller, which has the ultimate goal of
keeping acceptable indoor conditions from the thermal comfort
point of view.

The main goal of this paper is to show the design of a suitable
neural temperature predictor (especially concerning the order se-
lection of the regressor) and present the overall architecture of the
coupled neuro-fuzzy model.

2. State of the art

A large number of studies exist regarding assessing, creating and
maintaining indoor comfort conditions for building occupants [23].
In addition to parameters including thermalephysical properties of
building materials and architectural features of the building (e.g.,
orientation, layout, transparency ratio, and shape factor), satisfac-
tion with the indoor environmental quality (IEQ) is influenced by
individual characteristics and by physiological parameters, e.g., age,
clothing and physical activity [24].

Several scientific papers have applied soft computing and ma-
chine learning techniques to weather parameter forecasts; some
applications of fuzzy logic controllers (FLCs) of indoor thermal

parameters also exist [25e28]. For example, a fuzzy proportional
integral derivative (PID) controller was proposed by Calvino et al.
[27] for the microclimate control of confined indoor environments.
The PMV [4] was assumed to be the driving index for the control
procedure. In Refs. [25], “comfort” was represented by a 3D fuzzy
set in a fuzzy cube. The authors presented the structure of an FLC
and proposed its parameters be tuned using genetic algorithms.
The proposed systemwas able to successfully manage thermal and
visual comfort, air quality and energy savings in an office building.

Furthermore, artificial neural networks (ANNs) have been
widely used to forecast indoor and outdoor air temperature in
building applications, sometimes coupled with fuzzy logic (FL)
systems [29]. However, an extensive literature on the coupling of
neural and fuzzy models for comfort evaluation is missing.

Mustafaraj et al. [30] compared an auto-regressive model with
external inputs (ARX) and its neural network-based nonlinear
counterpart (neural network auto-regressive with external inputs
e NNARX) to forecast the thermal behavior of an office located in a
modern building using internal and external weather data to
forecast the dry bulb temperature and the relative humidity of the
room at different time horizons (from 30 min to 3 h ahead). Both
models yielded acceptable forecasts. However, the NNARX model
outperformed the ARX because temperature and relative humidity
are governed by nonlinear diffusion equations and the linear
models are not capable of capturing the (nonlinear) system
dynamics.

Soleimani-Mohseni et al. [31] applied an ANN model (a feed-
forward multi-layer perceptron e MLP e trained using the Leven-
bergeMarquardt algorithm) and an ARX model to estimate the
operative temperature in buildings. They similarly concluded that
the nonlinear ANN model outperformed the linear ARX model.

Huang et al. [32] used a multiple-inputs, multiple-outputs
(MIMO) ANNmodel (trained with Bayesian regulation to obtain the
optimal regularization parameters) for the prediction of the zone
temperature in a building. The model proved to be able to capture
fairly well the intrinsic dynamics of the investigated system.
Trained with data sampled on a 10-min time step, the model
yielded mean square errors (MSEs) ranging from 0.118 �C to
0.258 �C and mean absolute errors (MAEs) ranging from 0.211 �C to
0.422 �C for a 2-days-ahead forecast.

Thomas and Soleimani-Mohseni [33] compared first and second
order ARX and ARMAX models for two-steps-ahead2 indoor tem-
perature forecast with an auto-regressing moving average with
external inputs (ARMAX) models and Box-Jenkin (BJ) models. They
concluded that the BJ and ARMAX models gave nearly the same
MSE and MAE values for test data as the ARX models when using
models of the same order. However, the NNARX models always
outperformed (in terms of the MAE) the ARX models.

Mechaqrane and Zouak [34] also presented a comparison be-
tween NNARX and ARX models used to predict the indoor tem-
perature of a residential building. The NNARX model performance
was significantly better than the ARX model.

Gouda et al. [35] applied a feed-forward MLP trained with the
LevenbergeMarquardt algorithm to model the thermal dynamics
of building space and heating system to predict indoor temperature
2 h ahead. They used singular value decomposition (SVD) to select
the order of the predictor.

Argiriou et al. [36] developed an ANN controller consisting of a
meteorological module, which forecasts the ambient temperature
and solar irradiance, a heating energy switch predictor module and
a module for indoor temperature definition. The controller was

2 A two-steps-ahead prediction means 30 min ahead, since the sampling interval
was 15 min.
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