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a b s t r a c t

The steady free convection boundary-layer flow near a stagnation point in a fluid-saturated porous
medium is considered when the convecting fluid is close to its maximum density. Three forms for the
wall boundary condition are treated, a prescribed wall temperature, prescribed wall heat flux and
Newtonian heating. In each case the flow and heat transfer characteristics are determined by a dimen-
sionless parameter d that measures the difference between the ambient temperature and the temper-
ature at which the fluid attains its density maximum. We find that solutions are possible for d � 0 for
each case. For d < 0 there is a critical value dc of d, the value of which depends on the boundary
conditions applied, with solutions possible only for d � dc. The nature of this critical value, as well as
other limiting asymptotic forms is discussed.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Free convection boundary-layer flows arising from density
gradients within a fluid-saturated porousmedium in a gravitational
field are the subject of much ongoing research in the more general
area of fluid mechanics and heat transfer because of their impor-
tant applications in environmental, geophysical and energy related
engineering problems, see [1e3] for examples. To analyse these
flows the Boussinesq approximation [2] is commonly used together
with a linear densityetemperature relation. Water, as well as
several metals, has its maximum density in the liquid phase. For
example, pure water at atmospheric pressure attains its density
maximum at about a temperature of Tm ¼ 3:98o C and this density
reversal for lower temperatures can have significant effects on any
buoyancy-driven flow. Goren [4] proposed a new relation in which
the density difference varies with the square of the temperature
difference for those cases where the usual linear densi-
tyetemperature relation is not adequate. Gebhart and Mollendorf
[5] developed a more accurate density relationship for water
around the density extremum condition for different salinity levels.
Using this relation [6] they were able to find similarity solutions for

two-dimensional boundary-layer flows induced by the buoyancy
effects of thermal and saline diffusion.

Kay et al. [7] analysed the thermal bar, a descending planar
plume of denser fluid at temperature Tm in a lighter fluid at
temperatures above or below Tm, as a laminar free convection
boundary-layer flow, using the density relation proposed by Goren
[4]. More recently Cayley and McBride [8] studied the free
convection flow in a vertical cylinder of water in the vicinity of the
density maximum at about 4 �C both experimentally and theoret-
ically using several densityetemperature relations. One of their
densityetemperature relations, and the one that we shall consider
in this paper, has a parabolic variation in temperature T and is
claimed [8] to be valid for the range of temperatures from 0 �C to
100 �C. In [8] they also present experimental evidence for the
formation of a rising vortex of water, starting in the lower edge
regions of the cylinder.

In this paper we consider how a density maximum can affect
free convection boundary-layer flows within a fluid-saturated
porous medium. We model the flow in the porous medium by
Darcy’s law and take the densityetemperature relation suggested
by Cayley andMcBride [8]. We also restrict our attention to the flow
near a lower stagnation point. This simplification of the flow
geometry allows the steady problem to be reduced to similarity
form, which we can then treat in detail thus enabling the specific
features of a density reversal to be clearly brought out. We treat
three separate types of boundary condition, namely a prescribed
wall temperature, a prescribed wall heat flux and Newtonian
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heating whereby the surface heat flux is linearly related to the
surface temperature. We identify a dimensionless parameter d,
which gives a measure of the temperature at its maximum density
Tm in relation to the ambient temperature TN. The exact form that
d takes depends on the particular boundary conditions chosen and
it is this parameter dwhich determines the nature of the convective
flow, with there being a critical value dc of d which limits the range
of steady solutions.

Convection flows in porous media are usually studied by
assuming that the flow is driven either by a prescribed surface
temperature or by a prescribed heat flux, see [1e3] for example.
There has been previous work, for example by Ramanaiah and
Malarvizhi [9], Ramanaiah and Kumaran [10] and Kumaran and Pop
[11], that has considered the case of a prescribed heat transfer
coefficient, a type of mixed boundary condition. A very limited
amount of work has been done on problems with the type of mixed
condition, knownas ’Newtonianheating’, initiatedbyMerkin [12] for
a Newtonian fluid. Lesnic et al. [13] have investigated the steady free
convection boundary-layer flow along a vertical surface embedded
in a porous medium with Newtonian heating. Mixed convection
boundary-layerflows inporousmediawith ambient temperatures at
the densitymaximum[14,15] and close to the densitymaximum[16]
have shown that the nature of these flows can be considerably
different to the equivalent flowwhere a linear densityetemperature
relation applies. In [14e16] the outer flow and wall conditions were
taken to allow the problem to be reduced to similarity form. In [16],
where a density maximum could occur within the boundary layer,
a dimensionless parameter equivalent to the d used here arose and it
was seen that, under certain external conditions,flowswere possible
only for a finite range of this parameter.

We start by deriving the equations for the steady states of our
model, after which we consider the three separate cases of the wall
conditions for the heat input describing numerical solutions to the
resulting equations. As part of our discussion of the equations for
the steady case we find critical values dc for the parameter d with
solutions possible only for d� dc and with the value of dc depending
on the particular boundary conditions applied.

2. Equations

We consider the steady free convection flow near a stagnation
point which is embedded in a fluid-saturated porous medium at
ambient temperature TN and density rN. We assume that ðx; yÞ are
cartesian co-ordinates along and normal to the surface, with cor-
responding velocity components ðu; vÞ. We take the densitye
temperature relation, proposed by [8], in the form

rðTÞ ¼ r0 þ c1T � c2T
2 (1)

where r and T are respectively the density and temperature of the
convecting fluid and r0; c1 and c2 are positive constants. From (1)
the density has a local maximum rm at temperature Tm, where

Tm ¼ c1
2c2

; rm ¼ r0 þ
c21
4c2

: (2)

Cayley and McBride [8] tested the state Eq. (1) for pure water
with temperatures ranging from 0 �C to 100 �C taking the coeffi-
cient values r0 ¼ 999:845079, c1 ¼ 0:06378 and c2 ¼ 0:0080125,
with r in kg m�3 and T in 0 �C. They found that this expression gave
Tmx3.980 �C, rmx999:97kg m�3, showing an increase from the
density r0 at T¼0 �C. Note that at T¼100 �C, the density is reduced
to 926.1 kg m�3.

The governing equations are, after using the boundary-layer
approximation, Darcy’s law for the flow and the densi-
tyetemperature relation (1), see [1e3] for example,

vu
vx

þ vv

vy
¼ 0 (3)

u ¼ gK
m

�
c2ðT � TNÞ2þð2c2TN � c1ÞðT � TNÞ

�
SðxÞ (4)

u
vT
vx

þ v
vT
vy

¼ a
v2T

vy2
(5)

where SðxÞ ¼ x
[
gives the shape of the boundary near the stagna-

tion point and where K is the permeability of the porous medium, m
the viscosity of the convecting fluid, g the acceleration due to
gravity and a the effective thermal diffusivity.

We consider three forms for the boundary conditions on y ¼ 0,
namely

ðaÞ Prescribed wall temperature : T ¼ Tw

ðbÞ Prescribed wall heat flux :
vT
vy

¼ �qw

ðcÞ Newtonian heating :
vT
vy

¼ �hsT (6)

where Tw;qw and hs are constants. As well as (6) we also have that

v ¼ 0 on y ¼ 0; u/0; T/TN as y/N (7)

We make Eqs. (3)e(6) dimensionless by writing

Nomenclature

c1; c2 constants in the densityetemperature relation (1).
f ðyÞ (dimensionless) form for the streamfunction, defined

in (18).
g acceleration due to gravity.
hs wall heat transfer coefficient.
K permeability of the porous medium.
l length scale.
qw wall heat flux.
Ra Rayleigh number.
T fluid temperature.
Tm temperature at density maximum.
Tw wall temperature.
TN ambient temperature.
Ts temperature scale, Eqs. (10,11).

u, v velocity components in the x and y directions.
U0 velocity scale, Eqs. (10,11).
x, y co-ordinates along and normal to the surface.

Greek symbols
a effective thermal diffusivity.
g dimensionless constant in the Newtonian heating case.
d dimensionless parameter measuring temperature

difference.
dc critical value of d.
q (dimensionless) temperature difference.
m fluid viscosity.
r fluid density.
rm maximum fluid density.
j (dimensionless) streamfunction.
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