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a b s t r a c t

In this paper we investigate the magnetohydrodynamic slip flow of an electrically conducting, visco-
elastic fluid past a stretching surface. The main concern is to analytically investigate the structure of the
solutions and determine the thresholds beyond which multiple solutions exist or the physical pure
exponential type solution ceases to exist. In the case of the presence of multiple solutions, closed-form
formulae for the boundary layer equations of the flow are presented for two classes of viscoelastic fluid,
namely, the second-grade and Walter’s liquid B fluids. Heat transfer analysis is also carried out for two
general types of boundary heating processes, either by a prescribed quadratic power-law surface
temperature or by a prescribed quadratic power-law surface heat flux. The flow field is affected by the
presence of physical parameters, such as slip, viscoelasticity, magnetic and suction/injection parameters,
whereas the temperature field is additionally affected by thermal radiation, heat source/sink, Prandtl and
Eckert numbers. The regions of existence or non-existence of unique/multiple solutions sketched by the
combination of these parameters are initially worked out by providing critical values and then velocity/
temperature profiles and skin friction coefficient/Nusselt number are examined and discussed.
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1. Introduction

Due to many important applications in engineering processes,
the research on boundary layer behavior of a viscoelastic fluid over
a continuously stretching surface keeps going. Momentum and
heat transfer in a viscoelastic boundary layer over a linear
stretching sheet have thus been studied extensively in the recent
years because of its ever-increasing usage in polymer processing
industry, in particular, in manufacturing process of artificial film,
artificial fibers, polymer extrusion, drawing of plastic films and
wires, glass fiber and paper production, manufacture of foods,
crystal growing, liquid films in condensation process, etc.

In recent years a great deal of work has been carried out to
reveal the flow in viscoelastic fluid flow past a stretching surface.
Rajagopal et al. [1] studied viscoelastic second-order fluid flow over
a stretching sheet by solving the momentum boundary layer
equation numerically. Troy et al. [2] discussed uniqueness of the
momentum boundary layer equation. Subsequently, Chang [3] and

Rao [4] showed the non-uniqueness of the solution and derived
different forms of non-unique solution. Nataraja et al. [5] presented
the coefficients of skin friction and heat transfer obtained from the
closed-form solutions for the boundary layer equations of the flow
of Walter’s liquid B over a stretching surface. Vajravelu and Roper
[6] explored the flow and heat transfer in a viscoelastic fluid over
a stretching sheet with power-law surface temperature, including
the effects of viscous dissipation, internal heat generation or
absorption, and work due to deformation in the energy equation
and analyzed the salient features of the flow and heat transfer
characteristics. Khan and Sanjayan [7] presented approximate
analytical solution of the viscoelastic boundary layer flow over an
exponential stretching continuous sheet. Akyildiz and Vajravelu [8]
studied the flow of a viscoelastic fluid immersed in a porous
medium over a stretching sheet with magnetohydrodynamic flow
conditions, by obtaining exact, analytical, and numerical solutions
with existence results for the resulting coupled non-linear differ-
ential equations. Mushtaq et al. [9] examined the effects of thermal
buoyancy on viscoelastic flow of a second-grade fluid past
a vertical, continuously stretching sheet. Numerical solutions for
the coupled non-linear partial differential are generated by using
the local non-similarity method and Keller-Box scheme. Very
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recently, an investigationwas conducted by Arnold et al. [10] on the
viscoelastic (Walter’s liquid B model) fluid flow over a stretching
sheet.

The properties of the final product are known to depend
greatly on the rate of cooling involved in manufacturing processes.
It would be beneficial to have a controlled cooling system for these
processes. An electrically conducting polymeric liquid seems to be
a good candidate for some industrial applications such as in
polymer technology and metallurgy because the flow can be
regulated by external means through a magnetic field. The applied
magnetic field may play an important role in controlling
momentum and heat transfers in the boundary layer flow of
different fluids over a stretching sheet. In particular, many
metallurgical processes involve the cooling of continuous strips or
filaments by drawing them through a quiescent fluid and that in
the process of drawing, these strips are sometimes stretched.
Another interesting application of hydromagnetics to metallurgy
lies in the purification of molten metals from non-metallic inclu-
sions by the application of a magnetic field. Bearing this in mind,
many authors endeavored to explore the effect of transverse
magnetic field on boundary layer flow and heat transfer for
Newtonian and non-Newtonian fluids past stretching surfaces. The
combined effects of Joule heating and viscous dissipation on the
momentum and thermal transport were examined very recently
by Chen [11] for the MHD Newtonian fluid flow over a stretching
sheet. In the analysis of [12] the effects of thermal radiation and
temperature-dependent thermal conductivity on MHD viscoelastic
flow were examined. Liu [13] presented analytic solutions for the
flow in an electrically conducting, second-grade fluid subject to
a transverse magnetic field past a stretching sheet with power-law
surface temperature or power-law surface heat flux. Siddheshwar
and Mahabaleswar [14] explored the effect of radiation and
temperature-dependent heat source on the MHD viscoelastic flow
and convective heat transfer over a stretching sheet. Abbas et al.
[15] carried out an analysis to study the unsteady MHD

two-dimensional boundary layer flow of a second-grade visco-
elastic fluid over an oscillatory stretching surface. The flow is
induced due to an infinite elastic sheet which is stretched back
and forth in its own plane. An analysis was performed by Singh
[16] to study heat source and radiation effects on two-dimensional
steady flow of an electrically conducting, viscoelastic fluid (Wal-
ter’s liquid B model) over a stretching sheet in the presence of
transverse uniform magnetic field. A magnetic hydrodynamic
incompressible viscoelastic fluid over a stretching sheet with
electric and magnetic dissipation and non-uniform heat source/
sink was recently studied by Hsiao [17].

In most of these investigations no-slip condition is used. In the
recent years, micro-scale fluid dynamics in the Micro-Electro-
Mechanical Systems (MEMS) received much attention in research.
Because of the micro-scale dimensions, the fluid flow behavior
belongs to the slip flow regime and greatly differs from the tradi-
tional flow [18]. In the situationwhen the fluid is particulate such as
emulsions, suspensions, foams and polymer solutions, see Yoshi-
mura [19], the no-slip condition is inadequate. In such cases the
suitable boundary condition is the partial slip. In spite of its
importance in polymer and electrochemical industry, no proper
attention has been given to the flow analysis with partial slip
condition. Wang [20] discussed the partial slip effects on the planar
stretching flow. He obtained the perturbation and numerical
solutions. Recently Wang [21] applied the slip condition to the
linearly stretching Newtonian flow.

It is now well-known that multiple solutions of exponential or
trigonometric type exist for the viscoelastic fluid flow over
a stretching sheet in the absence of slip, among which the
physically acceptable solution is the exponential type. However,
no a satisfactory attempt has yet been made to determine the
bounds where the physical exponential type solutions terminate
or appear multiply. Therefore, the aforementioned works without
a prior justification assumed that such kind of solution is simply
unique. However, for various physically meaningful values of the

Nomenclature

Roman symbols
a positive stretching velocity
(a1, a2) heat constants
B uniform external magnetic field
c a constant
cp specific heat constant
Cf skin friction coefficient
Ec Eckert number
f dimensionless self-similar velocity
k thermal conductivity
l dimensional slip parameter
L dimensionless slip parameter
M magnetic interaction parameter
Nu Nusselt number
p pressure
P self-similar pressure
Pr Prandtl number
q rate of volumetric heat generation/absorption
qr radiative heat flux
qw heat flux
R thermal radiation parameter
s dimensionless suction or injection parameter
t a scale

T temperature
Tw surface temperature
TN free-stream temperature
u velocity component in x-direction
v velocity component in y-direction
vw dimensional wall mass transfer velocity
(x, y) longitudinal and transverse directions
z asymptotic value of the Nusselt numbers

Greek symbols
aR mean absorption coefficient
c internal heat generation/absorption parameter
h a scaled boundary layer coordinate
q a scaled temperature
m dynamic viscosity
n kinematic viscosity
r density
s electrical conductivity
s1 StefaneBoltzmann constant
f a scaled temperature
l exponential constant

Subscripts
w quantities at wall
N quantities at the free-stream
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