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a b s t r a c t

Frequency domain (AC) analysis, and associated phasor notation, offers a powerful and systematical way
for dynamic thermal characterisation. The complex thermal impedance Zth(ju) plays a central role and
can be obtained from analytical calculation, numerical simulation and experimental measurements.
Relevant associated time domain information, such as the transient heating curve, can be derived
through inverse Fourier transform (IFT). However, IFT is known to suffer from aliasing, instabilities and
other artifacts. In this work we propose an alternative method that bypasses the IFT but still allows
approximate reconstruction of the heating curve based on the impedance spectrum. The technique is
particularly useful in cases where only truncated or sparse (low-resolution) AC data is available. It simply
consists of plotting the magnitude of the impedance jZth(ju)j (or transfer impedance for locations outside
of the active junction) versus u�1 as time scale. Very reasonable results, with relative errors in the order
of 10%, are achieved, while the transformation is extremely simple to perform. We develop a mathe-
matical proof for increasingly complex situations, ranging from the simple case of one single thermal
time constant to a generic thermal system characterised by an arbitrary continuous time constant
spectrum. Additional illustration and validation of the method is provided by practical case studies.
Finally, we develop an extension to the evaluation of the impulse response and related transients. In that
context the proposed method produces accurate results as well, and outperforms IFT related techniques.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Frequency domain, or so called ‘AC’ analysis is used for dynamic
characterisation in a wide range of engineering and technology
domains. It consists of investigating sinusoidal oscillations of the
relevant physical quantities, typically by means of a complex pha-
sor notation. The technique is very commonly applied to electro-
magnetic field propagation, as encountered in e.g. transmission
lines, telecommunication systems, etc. In the main context of this
paper, i.e. dynamic thermal diffusion in microelectronic devices, AC
analysis offers useful features as well. The use of phasors (or related
variables, e.g. in the Laplace and Hankel domains) reduces the heat
equation from a partial differential equation (PDE) to an ordinary
differential equation (ODE), enabling easier analytical modelling
and numerical simulation. Employing such transformations, Hui

has developed a transmission line model for heat conduction in
multilayer thin films [1]. For numerical simulations, various
boundary element method (BEM) based thermal solvers, directly
operating in the frequency domain, are available in the literature
[2,3]. These schemes avoid the risk of unstable solutions associated
with ‘time marching’ techniques in the time domain. As far as
experimental analysis is concerned, frequency domain measure-
ments are known to be more robust to noise than their time
domain counterparts [4]. Accurate, high-resolution thermal
imaging of electronic ICs can be achieved relatively easily by means
of thermoreflectance, associated to a heterodyne lock-in technique
[5,6]. A major advantage is that both amplitude and phase distri-
butions are obtained. The latter can be used as a sensitive and
reliable heat detector for regions where only minor temperature
rises occur, which are hardly resolved by magnitude or time
domain recordings. In addition, AC techniques allow to study Joule
and Peltier heating/cooling modes separately, which is very useful
for the characterisation and optimisation of thermoelectric and
thermionic microcoolers. The Joule and Peltier effects respectively
have a quadratic and linear dependence on the supplied current,
and will therefore manifest themselves at different harmonics
when a sinusoidal excitation with zero DC offset is used.
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Despite the inherent advantages offered by frequency domain
techniques, and the fact that AC analysis in itself provides
a complete, systematic dynamic characterisation of the system,
additional transient information is desirable in many situations.
The normalised heating curve a(t), i.e. the temperature response to
a 1 W power step, is of particular interest. The reason is that
through adequate further processing, useful dynamic information
such as the thermal time constant spectrum and structure func-
tions can be derived [7e9]. In principle, the transient response R(t)
to an arbitrary excitation E(ju) can be evaluated by inverse Fourier
transform (IFT) if the transfer function H(ju) of the system is
known:

RðtÞ ¼ 1
2p

ZN
�N

HðjuÞEðjuÞexpðjutÞdu (1)

Unfortunately, the IFT is known to suffer from aliasing effects
and other artifacts. These issues become especially problematic
when only low-resolution samples or data truncated to a finite
frequency interval for H is available, as is typically encountered
when dealing with experimental measurements. Additional diffi-
culties to evaluate the integral arise when the transfer function has
poles on the imaginary axis.

These problems associated with the IFT are not new, and have
been addressed by several authors. Godinho et al. [2] return to the
time domain by inserting complex frequencies with a small imag-
inary part, of the form uc ¼ u� jh, into the IFT. The extra phase shift

introduced is then accounted for by applying an exponential
window of the form exp(ht) to the obtained transient. Other
authors apply a window function to the frequency spectrum
instead to compensate truncation errors [10], and proposed similar
modified IFTs to tackle imaginary poles [11]. The application of such
window functions may however add false oscillations to the tran-
sient, and blur the initial parts. Krylov and Liakishev [12] developed
a projection technique for Fourier inversion of data truncated to
a finite interval, that avoids window functions and is based on the
expansion of the frequency spectrum into Hermite eigenfunctions.
Transient analysis of electromagnetic field propagation by IFT has
received further particular attention. Rachidi et al. [13] performed
a low-frequency series expansion of the ground impedance matrix
of multiconductor lines above a lossy ground such that the Fourier
inversion of the matrix elements could be carried out semi-
analytically, with careful treatment of the singularities. They used
this technique to investigate lightning-induced voltages in the
lines. Shi [14] approximates a bounded, causal transfer function H
(ju) as a sum of complex exponentials. The transient response of
each of the terms can then be obtained through exact inverse
Fourier transform. However, the decomposition of H involves
computationally costly matrix operations including singular value
decomposition and QR factorisation into an orthogonal and right
triangular matrix.

In this paper we propose a method, mainly targeted at heat
transfer applications, to evaluate transient responses from AC
information but entirely bypassing inverse Fourier transforms. The
technique is applicable to sparse frequency spectrum data and very

Nomenclature

Roman
a(t) normalised heating curve [K/W or e]
a*(t) approximated normalised heating curve [K/W or e];

absolute error: a(t) e a*(t)
BEM boundary element method
Ci thermal capacitance in ladder network [J/K]
Cv thermal capacitance per volume unit [J/m3 K]
Cp thermal capacitance per mass unit [J/kg K]
d substrate thickness
E(ju) excitation
f frequency [Hz]
F(u, v) generic integral kernel for a2(z)
F0(u, v) dF

dz
g(z) modified impulse response da

dz
g*(z) approximated modified impulse response da*

dz
Gð r!j r!0Þ 3-D Green's function [K/W]
G(u, v) generic integral kernel for a*2(z)
G0(u, v) dG

dz
H(ju) transfer function
h(t) impulse response da

dt
h*(t) approximated impulse response da*

dt
IFT inverse Fourier transform
j imaginary unit
k thermal conductivity [W/m K]
P power [W]
Rth thermal resistance [K/W]
Ri thermal resistance in ladder network [K/W]
R(t) transient response
R(z) time constant spectrum [K/J]
R radius of circular heat source [m]

r! place vector x 1
!

x þ y 1
!

y þ z 1
!

z;
relative error: ½aðtÞ � a*ðtÞ�=aðtÞ

S cross-section area [m2]
t time [s]
T temperature [K]
TIM thermal interface material
U(ju) Fourier transform of Heaviside step function
u transformed integration variable u ¼ z1 � z
v transformed integration variable v ¼ z2 � z
Zth(ju) thermal impedance [K/W]
z logarithmic time variable z ¼ ln(t)

subscripts
0 characteristic value
i node or element number in ladder network
s source

superscripts
* approximated
trans transfer

Greek
a magnitude ratio for 2 time constant case
b time constant ratio for 2 time constant case
g parameter in FuosseKirkwood time constant

distribution
d Dirac distribution
f angle variable in cilindrical coordinates (r, f, z)
r mass density [kg/m3]
s thermal time constant [s]
u angular frequency u ¼ 2pf [rad/s]
x dimensionless time variable [e]
z logarithmic time constant variable z ¼ ln(s)
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