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A B S T R A C T

In this paper, exact solutions for the static bending response of laminated composite beams have been derived considering the effect of strain gradient elasticity.
Separate solutions for the laminate comprising of isotropic and orthotropic laminae have been presented here. The sixth-order tensor for the higher order elastic
coefficients has been evaluated using the generalized first strain gradient elasticity model with three independent material length constants. The significance of the
gradient elasticity in low-dimensional structures has been established employing numerical examples of micro and nano-beams, and comparing the current results
with the classical elasticity results. A parametric study over the variation of the axial, transverse Cauchy and physical stresses across the thickness of the beam has
been conducted. Also, the discontinuity of the inter-laminar transverse Cauchy stresses and higher order stresses across the thickness has been studied in the current
framework. The exact solutions developed in this paper may be used as benchmark results for validating further research involving the strain gradient elastic
response of low-dimensional laminated composite beams.

1. Introduction

Micro- and nano-electro mechanical systems are being extensively
used as micro-sensors and actuators [1–4]. However, the elastic beha-
viour of these structures when measured experimentally have shown
significant deviation from the classical elastic results [5–7]. Considering
the use of these devices in sensing and actuation of sensitive applica-
tions, this difference is unacceptable. The micro-structural effects at
these low dimensions are caused by the non-local interaction of the
stress and strain in the system [8]. This non-local phenomenon resulting
in a size-dependent behaviour causes a significant effect over the me-
chanical response of the low-dimensional structures.

Mindlin [9,10] proposed the first and second strain gradient the-
ories for linear elastic continuum, which can be used to account for this
behaviour. These gradient models consider the material length con-
stants for evaluation of the structural response. Owing to the difficulty
in calculating 16 material length constants necessary for an isotropic
material, these models have been simplified. Mindlin and Eshel [11]
proposed the first strain gradient elasticity model involving only five
independent material length constants for isotropic bodies. Parallely,
Toupin [12] and Mindlin [13] also modelled the gradient effects using
the couple stress theory involving two independent material length
constants. Yang et al. [14] modified this couple stress model to derive
the modified couple stress theory involving only a single material
length constant considering only the symmetric component of the
couple stress. Hadjesfandiari [15] presented a model considering only

the anti-symmetric component of the couple stress theory. Lam et al.
[5] extended the Yang’s couple stress model [14] to derive the strain
gradient theory involving the symmetric component of couple stress
along with the dilatational and stretch gradients. Experimental studies
to determine the material length scales based on these theories have
been conducted [16–19]. All these models consider the first gradients of
strain in a simplified form. The physical inconsistencies owing to the
assumptions over the symmetric couple stress have been discussed, and
the asymmetric couple stress has been mathematically established by
Shaat [20]. Zhou et al. [21] reformulated the Mindlin’s first strain
gradient elasticity model [11] to derive a strain gradient model for
isotropic materials involving three independent material length con-
stants. This model is a more generalized form of the Lam’s model
considering both the symmetric and anti-symmetric components of
curvatures. This model may be considered as the Generalized First
Strain Gradient Theory (GFSGT).

Numerous studies involving strain gradient effects in structures
have been carried out. The static and dynamic response of beams
considering Euler–Bernoulli theory [22–24], Timoshenko theory
[25,26], classical laminated plate theory [27,28], Mindlin plate theory
[29,30] have been evaluated. All the above studies were for homo-
geneous isotropic materials. Further studies were extended to func-
tionally graded beams [31] and laminated composites [32–35]. How-
ever, the above studies were based on simplified models of strain
gradient elasticity, and have assumed simpler beam theories trivially
resulting in zero strain gradient components. The authors have derived

https://doi.org/10.1016/j.compstruct.2018.07.030
Received 25 April 2018; Received in revised form 12 June 2018; Accepted 4 July 2018

⁎ Corresponding author.
E-mail address: mcray@mech.iitkgp.ernet.in (M.C. Ray).

Composite Structures 204 (2018) 31–42

0263-8223/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2018.07.030
https://doi.org/10.1016/j.compstruct.2018.07.030
mailto:mcray@mech.iitkgp.ernet.in
https://doi.org/10.1016/j.compstruct.2018.07.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2018.07.030&domain=pdf


the exact solutions for the static bending response of a simply supported
homogeneous isotropic beam based on GFSGT, by solving the governing
equations and associated boundary conditions [36]. By solving for the
displacements from the governing equations, no assumptions were
made over the displacement fields in their analysis. Later, they have
extended their study to derive the numerical solution for other general
loading and boundary conditions [37] by considering the higher order
deformation theory. Realizing the importance of laminated composites
for structural applications, a similar analysis is deemed necessary for
determining the size-dependent bending response of the laminated
beams.

Therefore, this paper deals with the derivation of the exact solutions
for the size-dependent elastic response of simply-supported laminated
beams subjected to a sinusoidally distributed mechanical load. The size-
effects over the elastic response have been modelled by the GFSGT. The
governing equations and the boundary, interface conditions necessary
for this have been derived from the variational principles. These exact
solutions may be used as benchmark for validating further research
involving micro- and nano-laminated composites.

2. Constitutive relations

The deformation energy density of an elastic continuum considering
the strain gradients may be written as [36]:

∊ = ∊ ∊ +W η C g η η( , ) 1
2

1
2ij ijk ijkl ij kl ijklmn ijk lmn (1)

here, the strain tensor, ∊ij and the strain gradient tensor, ηijk are ex-
pressed in terms of the displacement vector ui as:

∊ = + = ∊u u η1
2

( ),ij i j j i ijk jk i, , , (2)

The size-effects being analyzed in the current study are due to the in-
clusion of the energy corresponding to the strain gradients in Eq. (1)
[36,21]. Based on the above form of the deformation energy, the
second-order Cauchy stress tensor σ , and the third-order moment stress
tensor τ , which are the energy conjugates of the strain and the strain
gradient tensor respectively, may be expressed as:

= ∊ =σ C τ g η, ,ij ijkl kl ijk ijklmn lmn (3)

Based on the above definitions for the stress and the higher order stress
tensors, the deformation energy density given by Eq. (1) may be re-
written as:

∊ = ∊ +W η σ τ η( , ) 1
2

1
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In the above constitutive relations, the fourth order tensor Cijkl denotes
the conventional fourth order elastic coefficient tensor, and gijklmn is the
sixth order higher order elasticity tensor. The forms of the fourth-order
elastic tensor for all forms of material symmetry are well documented
[38]. The higher order elasticity tensor g for an isotropic solid has been
proposed as [21]:
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where, the material constants = ⋯a i( 1 5)i are given in terms of the
Lamé parameter μ, and the three micro-structure dependent material
scales l l,0 1 and l2 as:
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3. Strain gradient elasticity governing equations

For an elastic solid of volume Ω, bounded by ∂Ω, with sharp edges Γ,
the total deformation energy of the solid may be written as:

∫= ∊U W η dV( , )ij ijkΩ (7)

The corresponding governing differential equations of equilibrium, and
the associated boundary conditions may be obtained from applying the
variational principle over U. Using Eq. (4) in Eq. (7), the first variation
of the total deformation energy of the solid can be written as:

∫= +δU σ δu τ δu dVik k i ijk k jiΩ , , (8)

This may be expressed in terms of the mutually independent variations
of the displacement vector δui, and the normal gradient of the dis-
placement vector = ∂ ∂Dδu n δu x( / )i k i k as:
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where, = − ∂ ∂D δ n n x(·) ( ) (·)/j jl j l l denotes the surface gradient.
A detailed derivation of the above equation has been carried out by

the authors in their previous article [36], and hence not repeated here
for brevity. Considering the variation of the external work done (V)
over the solid we may write:

∫ ∫= + + + ∮
∂
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where, bk is the applied body force density, t q,k k are the surface traction
and double stress traction vector applied per unit surface area, re-
spectively, and rk is line load over unit length along sharp edge. Using
the variational principle =δU δV the following governing differential
equations are derived from Eqs. (9) and (10):

− + =σ τ b 0, inΩik i ijk ij k, , (11)

The variational principle also yields the following associated boundary
conditions:

− + − = = ∂n σ τ D n n n τ D n τ t u u( ( ) ( ) ( )) or on Ωi ik ijk j l l j i ijk i j ijk k k k, (12)
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4. Exact solutions for lamina

Fig. 1 illustrates a simply supported laminated beam in the
x x1 3-plane. The geometric length, and the width of the laminate are L
and b, respectively. The laminated beam is comprised of N laminae, and
the total geometric height of the beam is h. The Cartesian coordinate

Fig. 1. A schematic of the simply-supported laminated beam with a sinusoidally
distributed load applied at =x h/23 .
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