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A B S T R A C T

The meshless Petrov-Galerkin (MLPG) method is developed to analyse 2-D crack problems where the electric
field and displacement gradients exhibit a size effect. The size-effect phenomenon in micro/nano electronic
structures is described by the strain- and electric field-gradients. Both the electric intensity vector and strain
gradients are considered in the constitutive equations of the material and the governing equations are derived
with the corresponding boundary conditions using the variational principle. The coupled governing partial
differential equations (PDE) for stresses and electric displacement field are satisfied in a local weak-form on
small fictitious subdomains. All field quantities are approximated by the moving least-squares (MLS) scheme.
After performing the spatial integrations, we obtain a system of algebraic equations for the nodal unknowns.

1. Introduction

The size-effect phenomenon is observed in structures where char-
acteristic length of material structure is compared with the size of the
analyzed body. The size-effect has been observed in a number of ex-
periments [1–7]. The electric intensity vector- and strain-gradient effect
is very strong mainly for nano-sized dielectrics. The classical continuum
mechanics neglects the interaction of material microstructure and the
results are size-independent. The atomistic models have been developed
to consider size-effect phenomena in materials. Unfortunately, there are
extremely high requirements on computer memory in atomistic models.
It seems to be more convenient to develop advanced continuum the-
ories to account intrinsic length scales for materials. Up to date there
are two reliable advanced continuum theories with size-effect inclusion,
namely the non-local elasticity [8,9], and strain-gradient elasticity
[10,11]. In the nonlocal theory, the stress at a reference point is a
functional of strains at more points of the body and size effect para-
meter is considered in the weight function. In the gradient theory, there
are considered also the higher order strain gradients in the strain energy
density of a solid. The formulation based on two length scales [10] is
very complicated and it was simplified by Aifantis [12] by introducing
only one length parameter. The further mathematical and im-
plementational treatment can be found in later works [13,14]. A review
of various higher-order gradients theories has been published by Fleck
and Hutchinson [15].

The large strain gradients and dislocations are occurring at the crack
tip vicinity. Heterogeneous plastic deformation requires additional

dislocations to ensure geometric compatibility. They contribute mainly
to material work hardening. Paneda et al. [16] investigated the influ-
ence of gradient-enhanced dislocation hardening on the mechanics of
notch-induced failure. It seems that the gradient elasticity theory can be
suited for studying crack problems. This theory can eliminate the crack-
tip strain singularity while providing structure to the cohesive zone
without resorting to extraneous forces as in plastic strip models [17]. In
the literature one can find a lot of applications of the gradient theory to
crack problems in elasticity [18–25]. The near-tip fields for a crack in
elastic or elastic–plastic materials with strain-gradient effects under
mixed mode loadings are given by Huang et al. [26]. There is presently
a paucity of papers devoted to fracture mechanics analysis of piezo-
electric solids described by the gradient theory [27].

For more real modeling of cracks in piezoelectric solids it is needed
to consider the electric field and strain gradients in a more appropriate
and reliable size-dependent theory. The linear coupling of electric fields
and strain gradients is called as the direct flexoelectric effect [28–30].
This phenomenon can be viewed as a higher order effect with respect to
piezoelectricity. Except the direct flexoelectric effect, we have also
converse flexoelectricity, where there is the linear coupling between the
stress and applied electric field gradients [31–33]. Hu and Shen [34,35]
have applied the variational principle for nano-sized elastic dielectrics
with the flexoelectric effects as well as the surface effects to derive
governing equations.

In this study, the size-effect is considered by including the strain
gradients and, also, by the electric field-strain gradient coupling for in-
plane crack problems in a piezoelectric body. The variational principle
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is applied to derive the governing equations for considered constitutive
equations with both the direct and converse flexoelectricity. Due to the
high mathematical complexity of the boundary value problem, we need
accurate and efficient computational tool to solve a general problem.
The C1-continuous elements are required in numerical discretization
methods to guarantee the continuity of variables and their derivatives
in the present theory involving the fourth-order derivatives of dis-
placements and electric potential in governing equations. To overcome
this problem in the finite element method (FEM), it is needed to apply
the mixed formulation or to develop the subparametric C1-continuous
elements [36]. However, it is a difficult task. Recently, Deng et al. [37]
have developed a mixed finite element method for the study of pro-
blems with both strain gradient elasticity and flexoelectricity being
taken into account. Then, the C0 continuous elements can be used in
mixed FEM and the kinematic relationship between displacement field
and its gradient is enforced by Lagrangian multipliers.

It is familiar that in the Meshless Local Petrov-Galerkin method
(MLPG) with the Moving Least-square (MLS) approximation the order
of continuity of the MLS approximation is given by the minimum be-
tween the orders of continuity of the basis functions and that of the
weight function. This allows the order of continuity to be tuned to a
desired value [38–40]. However, in conventional discretization
methods, such as the FEM or the boundary element method (BEM), the
interpolation functions usually result in a discontinuity of secondary
fields on the interfaces of elements. A conventional displacement-based
FEM approach cannot be readily used to compute flexoelectricity since
the C1 continuity is required for primary fields. Abdollahi et al. [41]
applied the smooth meshfree basis functions in a Galerkin method to
flexoelectric problems. It allows to consider general geometries and
boundary conditions.

In the present paper, the authors have developed a meshless method
based on the MLPG weak-form to solve general crack problems in
piezoelectric solids with both the direct and converse flexoelectricity.
Numerical examples are presented and discussed to compare the results
obtained by the gradient theory with those obtained by classical theory.

2. Basic equations for electric field-strain gradient theory

The gradients of electric intensity vector and strains are considered
in the constitutive equations for piezoelectric solids [34,35]
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where σij, Dk, τjkl and Qijare the stress tensor, electric displacements,
higher order stress and electric quadrupole, respectively. The material
parameters a and c are the second-order permittivity and the fourth-
order elastic constant tensors, respectively. The symbol e denotes the
piezoelectric coefficient and f is the electric field-strain gradient cou-
pling coefficient tensors representing the higher-order electro-
mechanical coupling induced by the strain gradients. The sixth-order
material tensor g is the higher-order elastic parameter. The symbols b
and h denote the quadrupole-strain coefficients and higher-order elec-
tric parameters, respectively.

The strain tensor εij and the electric field vector Ej are related to the
displacements ui and the electric potential ϕ by

= + = −ε u u E ϕ1
2
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The strain-gradient tensor η is defined as

= = +η ε u u1
2
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The two length scales in the Mindlin theory are taken equal to each

other in the Aifantis theory [13]. It greatly simplifies mathematical and
implementational treatment. Then, the higher-order elastic parameters,
gjklmni, are assumed to be proportional to the conventional elastic stiff-
ness coefficients, cklmn, by the internal length material parameter l
[42,43]. Then, one can write
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In the gradient theory of elasticity Askes and Aifantis [14] have
considered the Laplacian term in constitutive equation for stress tensor
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2

,

The electric displacement vector for an advanced theory in analogy
with gradient theory of elasticity can be written as

= + + +D a E e ε m δ δ ε[ ( ) ]k kl l kij ij n n ij n
2
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Similarly, the electric field-strain gradient coupling coefficients f
and the quadrupole-strain coupling coefficients b are assumed to be
proportional to the piezoelectric coefficients and the scaling parameter
m. The higher-order electric parameters h can be expressed by the di-
electric constants akl and the scaling parameter q. Then, one can write
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Making use of the standard Voigt notation for strains and stresses as
well as their gradients, the constitutive Eq. (1) for 2D problems in
x x( , )1 3 -plane and orthotropic materials can be written in a matrix form
as
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A piezoelectric solid occupies the domain V with the boundary Γ.
The electric Gibbs free energy density function U in the electric field
gradient theory is given by Hu and Shen [34] as
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