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A B S T R A C T

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a
pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct
numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in
physical space on the example of a one-dimensional layered bar. Results of numerical simulations are compared
with the analytical solution constructed specifically for the considered problem. The analytical solution as well
as numerical computations show the strong influence of the composition of constituents on the dispersion of a
pulse in a heterogeneous bar and the equivalence of results obtained by two numerical methods.

1. Introduction

Wave propagation in a slender heterogeneous solid bar is the typical
test problem for models of composite materials [1–4, e.g.]. The mod-
eling is necessary because macroscopic properties of composite mate-
rials are strongly influenced by the properties of their constituents. The
macroscopic properties are usually determined by a homogenization,
which yields the effective stresses and strains acting on the effective
material.

The basic idea of homogenization consists in a replacement of a
heterogeneous solid by a homogeneous one which, from the macro-
scopic point of view, behaves in the same way, as do its constituents,
but with different, effective, values of the appropriate material con-
stants [5]. This idea reappeared many times in the last two centuries, as
it is indicated in recent reviews [5–8]. Mathematical details of classical
homogenization models can be found in [9].

Layered periodic materials represent the simplest possible pattern of
composites from the theoretical point of view. Their modeling also has
a rich history [10]. Constitutive models of effective properties for such
materials are still under development using either ensemble averaging
[11,12], or integration over unit cell [13,14], or scattering response
[15]. However, as it is pointed out by Willis [16], ”The broad conclu-
sion is that an ”effective medium” description of a composite medium
provides a reasonable approximation for its response, so long as the
predicted ”effective wavelength” is larger than two periods of

microstructure – say at least 2.5”. This is confirmed recently on the
example of Mindlin’s microelasticity theory [17]. It is worth therefore
to build tools for the analysis of the interaction between layers and
waves with the shorter wavelength. The natural choice for such tools is
provided by numerical methods due to their flexibility and universality.
However, we need to be insured in the accuracy and stability of them. It
is well known that numerical simulation of wave propagation even in a
homogeneous solid bar under shock loading is under discussion so far
both in the context of finite volume [18,19] and finite element methods
[20–23]. This is why two different numerical methods – finite element
method and finite volume method – are applied in the paper for the
simulation of a pulse propagation in a slender heterogeneous solid bar.
The pulse propagation is preferable from the practical point of view
[24], while theoretically only the behavior of dispersion curves is of
interest [25–27] e.g.

It should be repeated, following Zohdi [28] that ”solutions to partial
differential equations, of even linear material models, at infinitesimal
strains, describing the response of small bodies containing a few het-
erogeneities are still open problems”. Fortunately, the analytical solu-
tion is constructed specifically for the considered test problem by means
of the Laplace transform technique [29].

The objective of the paper is to demonstrate the influence of the
composition of alternating layers on the dispersion of a short pulse and
to compare results of simulation obtained by two different numerical
methods with the analytical solution of the problem.
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In this paper, we consider the propagation of a finite pulse, the
length of which is comparable with the size of heterogeneities. The
dispersion of the pulse is provided by the wave reflection and trans-
mission in periodic layered structure where each layer is dispersionless.
It is clearly demonstrated that strong dispersion effects depend not only
on the size of heterogeneities but also on their mutual position.

2. Formulation of the problem

We consider wave propagation in a bar of a constant cross section.
The motion is assumed being one-dimensional and considered within
the linear theory of elastodynamics [30, e.g.] It is governed by the
balance of linear momentum, which in the absence of body forces has
the form
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where ρ is the matter density, v is the particle velocity, σ is the one-
dimensional Cauchy stress. In the linear elasticity the Cauchy stress
obeys the Hooke law =σ E ε,where E is the Young modulus and ε is the
one-dimensional strain.. The wave speed in a bar is given for one-di-
mensional case by =c E ρ/ , therefore, the Hooke law has the fol-
lowing form

=σ ρc ε.2 (2)

The strain and velocity are related by the compatibility condition
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In terms of the displacement, the balance of linear momentum is re-
presented in the form of the wave equation
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since the displacement u is connected to the strain and particle velocity
by
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It should be noted that the material parameters ρ and c are distinct in
different parts of the bar. However, they keep constant values for each
computational cell in numerical methods for the bar with a piecewise
constant distribution of material parameters such as Young modulus
and matter density.

It is assumed that the bar is occupied the interval ⩽ ⩽x L0 .
Initially, the bar is at rest. The left end of the bar is loaded by the pulse,
the shape of which is formed by an excitation of the stress for a limited
time period (Fig. 1). Then the stress at the left end is zero. The right end
of the bar is fixed.

For convenience, the bar is divided into three parts. The left and the
right parts of the bar are supposed to be homogeneous and made from
the same stiff material. The central part of the bar contains in-
homogeneity provided by inclusions of a more soft materials (see
Fig. 2). The solution of system of Eqs. (1)–(3) or Eq. (4) satisfying
formulated initial and boundary conditions is obtained by means of
analytical and numerical methods in the following sections.

3. Analytical solution

To verify the correctness and the accuracy of numerical results
presented in Section 4, the analytical solution of the above described

problem was derived. The main idea of the analytical procedure is
based on the fact that the final solution for a bar with a piecewise
constant distribution of material properties can be constructed from the
solutions derived for each of homogeneous parts of the bar combined
through the boundary conditions formulated at their interfaces.

It is clear that the propagation of longitudinal waves in arbitrary ith
homogeneous part is formally described by the same equation as (4).
The solution for such particular problem with general boundary con-
ditions can be simply derived based on the solution presented in [30].
Applying the Laplace transform in time [29] to (4) with zero initial
conditions one obtains a simple ODE the solution of which can be
written as
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where p is a complex number. The variable xi in (6) represents a local
coordinate defined for the ith part of the bar, the constant ci is the wave
speed in this part and the function u x p( , )i i denotes the Laplace trans-
form of the corresponding displacement u x t( , )i i . The unknown complex
functions C i1, and C i2, can then be determined through the boundary
conditions of the problem and through the conditions of displacement
and stress continuity formulated for each interface between two parts
with different material properties. It leads to a system of algebraic
equations in complex domain. Substituting its solution into (6) one
obtains the final solution of the problem in Laplace domain.

The last step of the analytical procedure consists in the inversion of
previously mentioned formulas back to time domain. It can be done
analytically by means of the residue theorem in this case or numerically
by using a suitable algorithm. Given the low computational demands
and the versatility, the latter approach was used in this work. In par-
ticular, an algorithm based on FFT and Wynn’s epsilon accelerator was
applied to manage the inverse Laplace transform problem. As proved in
[29], this algorithm is effective and robust and it gives very precise
results for various problems of elastodynamics. The analytical results
for specific study cases are presented together with the numerical so-
lutions in Section 5.

4. Numerical procedures

Application of numerical methods suggests a discretization in space
and time. For this purpose, the interval ⩽ ⩽x L0 is divided into N
elements of the same size. The state of each element is described dif-
ferently in distinct methods. In this paper, we compare results obtained
by the finite element method (FEM) and the finite volume method
(FVM) in case of explicit approaches of these methods.

4.1. Finite element method and explicit time integration

In this section, we shortly remind the basic of the finite element
method in the one-dimensional case for linear elastodynamics. Spatial
discretization of elastodynamics problems by the finite element method
leads to the matrix form [31]

+ = ∈t t t t TMd Kd F¨ ( ) ( ) ( ), [0, ], (7)

=d d(0) ,0 (8)

=d ḋ (0) ̇ .0 (9)

Here M denotes the mass matrix, K marks the stiffness matrix, F is the
time-dependent load vector, d d, ̇ and d̈ contain nodal variables,
namely, displacements, velocities, and accelerations, respectively, t is
the time and dots denote time derivatives. Initial values for displace-
ments and velocities are denoted by d0 and ḋ0. The initial acceleration
vector should satisfy the equation of motion at the time

+ =t Md Kd F: ¨0 0 0 0.
Practically, the stiffness matrix K and the mass matrix M areFig. 1. A scheme of the test problem - a pulse loaded free-fixed bar.
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