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A B S T R A C T

The manuscript offers a methodology to solve the local problem derived from the homogenization technique,
considering composite materials with generalized periodicity and imperfect spring contact at the interface. The
general expressions of the local problem for an anisotropic composite with perfect and imperfect contact at the
interface are derived. The analytical solutions of the local problems are obtained by solving a system of partial
differential equations. In order to validate the model, the effective properties of the structure presented in the
literature are obtained as particular cases. The solution of the local problem is used to extend the study to more
complex structures, such as, wavy laminates shell composites with imperfect spring type contact at the interface.
Also, the results are compared with the results for perfect and imperfect contact models available in the lit-
erature.

1. Introduction

Smarts materials composites present great potential for applications
in aerospace, textile and bioengineering industries [1,2]. The devel-
opment of new technologies in these areas has brought an increase in
the use of composite materials and this in turn has brought the ex-
pansion and improvement of mathematical and computational
methods. One of the main objective of the mathematical and compu-
tational methods is the calculation of the effective properties (elasticity,
conductivity, etc.) [3–6]. The most common mathematical methods
used to compute the effective properties include finite elements method
(FEM) [7], Fourier series [8] and multi-scale asymptotic homogeniza-
tion methods [9–11]. Some authors have used discrete singular con-
volution method (DSC) for the free vibration analysis of rotating conical
shells [12].

Multilayered shells are the most popular composite structures due to
their good mechanical properties [13]. Many authors have focused their
work on the influence of the geometrical structure of the multilayered
composite [14–16]. Also, it have been considered different specific
structures, as cylindrical [17,18], spherical [19,20] or truncated conical
shell [21]. On the other hand, important studies have been developed in

order to see the influence of the contact behavior in the interface of the
components on the global properties of the composite [22–24]. The
imperfect spring type contact is one of the most widely studied pro-
blems. Many authors have been modeling the imperfect contact on fi-
brous composites with specific geometrical characteristics [25–27].

Many studies have focused their investigation to particular cases of
the properties of the composite elements. The most common compo-
nents are considered isotropic due to its wide appearance in problems
of physics and the mechanics of solids [28]. On the other hand, some
authors have extended the study of the composite structures to other
types of materials (orthotropic, monoclinic, etc). In [10] the asymptotic
homogenization method was used to find the effective elastic properties
of composite with monoclinic components. According to [29], the DSC
reports accurate results for the solution of problems considering or-
thotropic laminated canonical and cylindrical shells. In [30,31], the
authors study the stability of a cylindrical shell composite with com-
ponents of ceramic, functionally graded materials (FGM) and metal
layers. these studies consider the thickness variation for the FGM layer.
Some models have presented the thickness variation of the layers as a
parametric function of the coordinates [32].

In this contribution, the material coefficients of an elastic
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composites are assumed to be rapidly oscillating and periodic functions
of a curvilinear coordinates system. The two scales asymptotic homo-
genization method is used to find the homogeneous problem associated
to the equilibrium problem of the system [20,32]. This work gives an
approach to analyze the heterogeneous elastic problem in curvilinear
structures with general anisotropy, and perfect/imperfect contact at the
interface. During the homogenization process, the general expression of
the local problems is obtained, considering an generalized periodic
anisotropic structure. In previous works, the methods used to solve the
local problems were restricted to structures with generalized periodi-
city but considering perfect contact at the interface [33] or to rectan-
gular laminated composites and isotropic components [11]. As an ex-
tension of these contributions, a methodology to solve the local
problem for a composite with generalized periodicity, imperfect spring
type contact at the interface and anisotropic components is presented.
The analytical expression of the local functions are given as a solution
of linear equations. In order to validate the present approach, the ef-
fective coefficients reported in [10] for a “Chevron” structure with
perfect contact at the interface are obtained as special case.The effec-
tive coefficients reported in [33] are compared with the results ob-
tained for the imperfect contact case (spring type). As an extension of
[34], the effective coefficients of three dimensional wavy laminate
composite with imperfect contact at the interface are derived.

The paper is organized as follows. In Section 2, the asymptotic
homogenization method is used to derive the general expression of the
local problem and the interface conditions. The effective coefficient of a
laminate shell composite is introduced in Section 3, where the geometry
of the structure is described by a function � �→ϱ: 3 , [33]. Also, the
local problem for anisotropic components of the composite with perfect
contact at the interface is obtained as a system of linear equations. In
Section 4, the local problem is extended to the case of imperfect contact
at the interface (spring type) and the system of partial differential
equations associated to the local problem is solved. Finally, the Sections
5, 6 illustrate some examples and applications of the described meth-
odology.

2. Asymptotic homogenization method for linear curvilinear
elastic problem

In [32,34], the equilibrium elastic problem for a curvilinear com-
posite structure = ∪Ω Ω Ω1 2, bounded by the surfaces S S,1 2, is studied.
The general expression for the imperfect contact case is given by
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Here (%)|j denotes the contravariant derivative, f i is the vector of the
body forces, ui is the displacement vector, nj is outward unit normal
vector of the surface S2 or Γ and ui

0 and Si
0 are the prescribed values of

the displacement and the stress in S1 and S2, respectively. The surface Γ
is the interface between the two components of the composite. The
matrix = KK [ ]ij characterizes the imperfect contact in Γ and the order
of K is −O ε( )1 and〚%〛=(%)(2)- (%)(1) denotes the jump at the interface
Γ. In particular case when the components of → ∞KK, ij , the problem
(1)–(4) reduces to the perfect contact case at the interface.

In order to derive the expression of a homogenized problem asso-
ciated to (1)–(4), the two-scales asymptotic homogenization method
(AHM) is used. In [32,33], a methodology to derive the expression of
the following local problems is shown,
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where Y is the unit cell, Y Y,1 2 are the components of the unit cell and
=ϱ (ϱ , ϱ , ϱ )1 2 3 is the function that described the geometry of the com-

posite.
In [34], the two-scales asymptotic homogenization method is ex-

tended to the imperfect contact case and the following general ex-
pression of the imperfect spring type interface condition for Nm

lk was
introduced
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where ≡K K ε( )ij ij .
Finally, solving the local problem (5)–(6), the general expression of

the homogenized problem is
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where the effective coefficient =C C[ ]e
ijkl has the following expression

by components [32]
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In the following sections, different techniques are presented in order
to solve the local problems (5) and (6) for perfect and imperfect spring
contact type case at the interface.

3. Effective coefficient of a generalized stratified periodic
composite with perfect contact condition

Consider a stratified laminated shell composites, where the peri-
odicity (stratified) function ϱ has the property: � �→ϱ: m 1 with

=m 2, 3 [33].
Now we consider the case when the elastic tensor ≡ ( )C C x

ε
ϱ( ) , and

the stratified function � �→ϱ: 3 , i.e. ≡ x x xϱ ϱ( , , )1 2 3 . Substituting this
expression of ϱ into (9) and using the Voigt notation, the following
equation can be obtained
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The Eq. (10) is a generalization of the results presented in [33,11] (for
instance, see formula (3.35) in [33]).

3.1. Local problems

In this section, the local problem for a perfect contact case is solved,
i.e. → ∞K ij in (6). From (5), the following problems for the local
functions ∂ ∂N y/j

a , where =a 1, 2, 3, 4, 5, 6 and =j 1, 2, 3 are derived
in the Voigt’s notation [10],
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where
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