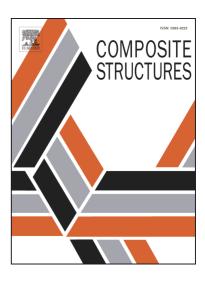
Accepted Manuscript

A modified Schapery theory to predict the progressive failure of CFRP


Shaoyu Hou, Evan J. Pineda

PII: S0263-8223(17)33196-3

DOI: https://doi.org/10.1016/j.compstruct.2018.04.070

Reference: COST 9624

To appear in: Composite Structures

Please cite this article as: Hou, S., Pineda, E.J., A modified Schapery theory to predict the progressive failure of CFRP, *Composite Structures* (2018), doi: https://doi.org/10.1016/j.compstruct.2018.04.070

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A modified Schapery theory to predict the progressive failure of CFRP

Shaoyu Hou^{a,*}, Evan J. Pineda^b

^aDepartment of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA

Abstract

Schapery theory, a thermodynamially-based work potential, is widely employed for describing material micro-structure changes in Carbon Fiber Reinforced Composites (CFRCs). Many well-accepted Schapery models utilize an approximation, $\nu_{ij} \cdot \nu_{kl} \approx 0 (i, j, k, l = 1, 2, 3)$, to formulate the matrix microdamage evolution equation. In contrast to that, a modified Schapery model from using full elastic strain energy expression, W_{Strain} , is presented and investigated. Our comparison results indicate that employing such approximation in 3D Schapery model introduces a spurious elastic strain energy term, predicts less matrix micro-damage accumulations and subsequently overestimates the degraded Young's modulus. The role of W_{Strain} in Schapery theory, model simplification approach, the applicability of the proposed 3D Schapery model as well as the consistency of using secant material assumption are discussed thereafter. In addition, the discrepancy between utilizing secant and tangent modulus degradation functions are also studied. We hope these findings could aid in the elucidation of the Schapery model formulation and benefit its application on simulating undulated fiber tows in textile composites.

Keywords: Schapery theory, Progressive failure, three dimensional, CFRCs

b Multiscale and Multiphysics Modeling Branch, NASA Glenn Research Center, 21000 Brookpark Rd., MS 49/7, Cleveland, OH 44135

^{*}Corresponding author

Email addresses: Shaoyu.hou@stonybrook.edu (Shaoyu Hou), Evan.j.pineda@nasa.gov (Evan J. Pineda)

Download English Version:

https://daneshyari.com/en/article/6702679

Download Persian Version:

https://daneshyari.com/article/6702679

<u>Daneshyari.com</u>