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Cordemex, Mérida, Yucatán 97310, México
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a b s t r a c t

In this work heat transport in layered systems is analyzed using a hyperbolic heat conduction equation
and considering a modulated heat source for both Dirichlet and Neumann boundary conditions. In the
thermally thin case, with Dirichlet boundary condition, the well known effective thermal resistance
formula is derived; while for Neumann problem only a heat capacity identity is found, due to the fact that
in this case this boundary condition cannot become asymptotically steady when modulation frequency
goes to zero. In contrast in the thermally thick regime, heat transport shows a strong enhancement when
hyperbolic effects are considered. For this thermal regime, an analytical expression, for both Dirichlet and
Neumann conditions, is obtained for the effective thermal diffusivity of the whole system in terms of the
thermal properties of the individual layers. It is shown that the magnifying effects on the effective
thermal diffusivity are especially remarkable when the thermalization time and the thermal relaxation
time are comparable. The limits of applicability of our equation, in the thermally thick regime are shown
to provide useful and simple results in the characterization of layered systems. Enhancement in thermal
transport and in the effective thermal diffusivity is a direct consequence of having taken into account the
fundamental role of the thermal relaxation time in addition to the thermal diffusivity and thermal
effusivity of the composing layers. It is shown that our results can be reduced to the ones obtained using
Fourier heat diffusion equation, when the thermal relaxation times tend to zero.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Effective models have provided a useful basis for the interpre-
tation of experimental data and understanding of heat transport in
non-homogeneous systems [1]. The most of these models are based
on Fourier law, which is supported by an impressive quantity of
useful and successful results that show a very good agreement with
experimental data for a great variety of experimental conditions
[2,3]. However, it is also well known that Fourier heat diffusion law
predicts an infinite velocity for heat propagation, in such a way that
a temperature change in any part of the material would result in an
instantaneous perturbation at each point of the sample. This
inconsistency has been studied by different researchers, and
a variety of models have been suggested to solve this situation. For
a comprehensive account on this subject the reader is referred to
the review articles of Joseph and Preziosi [4], Ozisik and Tzou [5]

and the recent book by Wang et al. [6]. The origin of this funda-
mental problem is due to the fact that Fourier law establishes
explicitly that, when a temperature gradient at time t is imposed,
the heat flux starts instantaneously at the same time t. Considering
that heat transport is due to microscopic motion and collisions of
particles, atoms and molecules, it is straightforward to conclude
that the Fourier condition on the velocity of heat transport cannot
be sustained [4,7,8]. One of the simplest and accepted models [6] to
solve the inconsistency of Fourier law was suggested by Cattaneo
[9] and independently by Vernotte [10]. These authors incorporate
the finite propagation speed of heat while retaining the basic
nature of Fourier law, modifying the heat flux equation in the form:

J
!ð x!; t þ sÞ ¼ �kVTð x!; tÞ; (1)

where J
! ½W=m2� is the heat flux vector, T [K] is the absolute

temperature, k [W/m K] is the thermal conductivity and s [s] is
a thermal property of the medium known as the thermal relaxation
time, which represents the time necessary for the initiation of the
heat flux after a temperature gradient has been imposed at the
boundary of the medium. Eq. (1) establishes that the heat flux does
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not start instantaneously, but rather grows gradually with the
thermal relaxation time after the application of the temperature
gradient. Conversely, s represents the time necessary for the
disappearance of the heat flux after the removal of temperature
gradient [4,6].

From Eq. (1), expanding the heat flux vector in Taylor series
around s¼ 0, and approximating at first order in s,

J
!ð x!; tÞ þ s

v J
!ð x!; tÞ

vt
¼ �kVTð x!; tÞ: (2)

The solution of this equation is given by

J
!ð x!; tÞ ¼ �k

s
e�t=s

Zt

�N

ex=sVTð x!; xÞdx: (3)

This equation establishes that the heat flux vector J
!ð x!; tÞ at

a certain time t depends on the history of the temperature gradient
established in the whole time interval from �N to t. This indicates
that the heat flux has thermal memory, consequence of the finite
value of the thermal relaxation time [11]. In this way, Eq. (3)
predicts a dependence of the time path of the temperature gradient
rather than an instantaneous response predicted by Fourier law.

Otherwise energy conservation equation is given by [2]

V$ J
!ð x!; tÞ þ rc

vTð x!; tÞ
vt

¼ Sð x!; tÞ; (4)

where r [kg/m3] is the density, c [J/kg K] is the specific heat of the
medium and the source S [W m3] is the rate per unit volume at
which the heat flux is generated. Combining Eqs. (2) and (4), the
hyperbolic Cattaneo–Vernotte heat conduction equation is
obtained [9,10]

V2Tð x!; tÞ � 1
a

vTð x!; tÞ
vt

� s
a

v2Tð x!; tÞ
vt2

¼ �1
k

�
Sð x!; tÞ þ s

vSð x!; tÞ
vt

�
; (5)

where a¼ k/rc is the thermal diffusivity of the medium. On the left
hand side of this equation, the second order time derivative term

indicates that heat propagates as a wave with a characteristic speedffiffiffiffiffiffiffiffiffi
a
.

s
r

. Note that the first order time derivative term corresponds to
a diffusive process, which is damping spatially the heat wave. Eq.
(5) reduces to the parabolic heat diffusion equation (based on
Fourier law) for s / 0 or in steady-state conditions
v J
!ð x!; tÞ=vt ¼ 0 [4].

The applicability of Cattaneo–Vernotte equation and its gener-
alizations has been widely discussed in the literature [4,6,12–16]. It
is clear that a physical system would follow the predicted hyper-
bolic behavior if the time scale of the heat transport phenomena
analyzed is of the order of the thermal relaxation time. This
quantity has been reported to be of the order of microseconds
(10�6 s) to picoseconds (10�12 s) for metals, superconductors and
semiconductors [7]. These small values of the thermal relaxation
time indicate that its effects will not be significant if the physical
time scales are of the order of microseconds or larger. In these
situations Fourier approach provides adequate results. However, in
modern applications such as analysis and processing of materials
using ultrashort laser pulses and high speed electronic devices, the
finite value of the thermal relaxation time is necessary to be
considered [11–17].

One of the most interesting questions is the applicability of the
hyperbolic formalism in materials with non-homogeneous inner
structure, such as biological tissues and granular materials, in
which several authors have claimed that they have observed
hyperbolic effects with thermal relaxation times of the order of
seconds [12,14]. This has generated a great controversy, because
another group of authors have argued that it is enough to consider
the traditional Fourier approach [18].

Recently, in the study of heat transport in nanofluids, different
research groups have reported thermal conductivities much higher
than the values predicted by the conventional mean field models
[19,20]. These results have induced to some authors to consider
that the hyperbolic equation for heat transfer could be a good
option to explain the experimental data for the thermal properties
of nanofluids [21]. This is due to the fact that high values of the
thermal relaxation times or the presence of nanoelements could
generate hyperbolic effects and consequently high thermal
conductivity values for a composed system [22], because that in
hyperbolic models; heat transport behaves more wave-like than in
the traditional Fourier parabolic approach [4].

Nomenclature

c specific heat, J/kg K
f frequency, Hz
F dimensionless parameter
I light beam intensity, W/m2

J heat flux, W/m2

k thermal conductivity, W/m K
l thickness, m
q complex wave number, m�1

Q positive constant, W/m3

R reflection coefficient
Re() real part
S heat source, W/m3

t time, s
T temperature, K
x spatial coordinate, m

Greek symbols
a thermal diffusivity, m2/s

3 thermal effusivity, Ws1/2/m2 K
h efficiency at which the absorbed light is converted into

heat
q spatial part of the oscillatory temperature, K
Q positive constant, K
l complex parameter
m classical thermal diffusion length, m
r density, kg/m3

s thermal relaxation time, s
c dimensionless real parameter
u angular frequency, rad/s

Subscripts
ac relative to the time-dependent temperature
amb ambient
dc relative to a time-independent temperature
0 relative to the semi-infinite layer
1 relative to the first finite layer
2 relative to the second finite layer
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