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A B S T R A C T

In this paper, the wave propagation in magneto-electro-elastic (MEE) nanoshells is investigated via two nonlocal
strain gradient shell theories, namely, the Kirchhoff–Love shell theory and the first-order shear deformation
(FSD) shell theory. By using Hamilton’s principle, we derive the governing equations, which are then solved
analytically to obtain the dispersion relations of MEE nanoshells. Results are presented to highlight the influ-
ences of the temperature change, external electric potential, external magnetic potential, external load, nonlocal
parameter and length scale parameter on the wave propagation characteristics of MEE nanoshells. It is found
that the electro-magneto-mechanical loadings can lead to the cut-off wave number at which the frequency
reaches to zero.

1. Introduction

Magneto-electro-elastic (MEE) materials are known as a type of
smart materials which can create magneto-electrical coupling effect
when they are exposed to mechanical stresses. In converse, they can
produce a strain by the application of a magneto-electrical field [1–3].
These properties make them suitable for a wide variety of applications,
such as sensors, actuators, and spintronics devices, among others. Re-
cently, MEE nanomaterials have received a great attention by the re-
search community due to their novel mechanical, electrical, magnetic
and other properties compared to their macroscopic counterparts [4–8].
The strong magnetoelectric coupling of MEE nanomaterials was ob-
served in Fe3O4 nanowires [9] and multiferroic ultrathin films [10].
Narayanan et al. [11] fabricated a single nanowire multiferroic system
exhibiting the room temperature magnetodielectric coupling. Tsai et al.
[12] found that the increased frequency and the enhanced intensity of
the tetrahedral site phonon modes were the result of the strong mag-
netoelastic coupling in multiferroic nanostructures.

MEE nanomaterials and their nanostructures are within the order of
a nanometer. The size-dependent properties of MEE nanomaterials and
their nanostructures have been observed in many experimental and
atomistic simulations. Size effect on the ferroelectric phase transition in
SrBi2Ta2O9 nanoparticles was reported by Yu et al. [13] and Ke et al.

[14] using thermal analysis and Raman scattering. Wang et al. [15]
revealed the thickness dependent size effect on ferroelectric behavior of
BiFeO3 films in the polarization versus electric field hysteresis loops.
Chen et al. [16] examined the size-dependent infrared phonon modes
and ferroelectric phase transition in BiFeO3 nanoparticles. Reddy et al.
[17] studied the particle size effect in the range 10–150 nm on the
magnetic properties and phase transitions in BiFeO3 samples. They
observed that the increase in magnetization in 12 nm particle size
samples was about four times larger than that of the bulk samples.
These studied indicated the importance of considering the size effect in
theoretical and experimental studies of MEE nanostructures.

The theoretical studies of the size-dependent mechanical properties
of nanostructures have been extensively conducted by using different
higher order continuum theories. One of the most popular theories in-
corporating the size effect is the Eringen’s nonlocal theory [18–21].
This theory can exhibit the stiffness-softening effect of the nonlocal
stress field on the mechanical performances of nanostructures. It has
some shortcomings due to neglecting stiffness-hardening mechanism
reported in many theoretical and experimental works. The strain gra-
dient theory [22–25] is able to predict the stiffness-hardening effect by
introducing the length scale parameter. Recently, Lim et al. [26] de-
veloped the nonlocal strain gradient theory to bring both of the non-
local parameter and length scale parameter into a single theory via the
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dynamics frame work. The nonlocal strain gradient theory can well
describe the stiffening effects and the softening effects of materials at
the same time.

After Lim et al.’s pioneering work, a few studies have been per-
formed on the basis of the nonlocal strain gradient theory. Simsek [27]
used the nonlocal strain gradient theory to capture the size effect on the
nonlinear natural frequencies of functionally graded nanobeams. Far-
ajpour et al. [28] proposed a new size-dependent plate model for
buckling of orthotropic nanoplates. Ma et al. [29] established a non-
local strain gradient beam model to solve the bending and buckling
problems of nanobeams. Li et al. [30] utilized the nonlocal strain gra-
dient theory to explore bending, buckling and free vibration of axially
functionally graded nanobeams. Extensive studies can be further re-
ferred to the articles [31–36] for the bending, buckling, vibration and
wave propagation of nanostructures. Ebrahimi et al. [37] analyzed the
wave dispersion behavior of smart rotating magneto-electro-elastic
nanoplates based on the nonlocal strain gradient theory. They discussed
both stiffness-softening and stiffness-hardening behaviors of nanos-
tructures. Later, they studied the wave dispersion characteristics of
rotating heterogeneous MEE nanobeams [38] and rotating thermo-
elastically-actuated nanobeams [39]. Aghdam et al. [40] analyzed the
size-dependent buckling and postbuckling behavior of MEE composite
nanoshells under the combination of the axial compressive load and
electromagnetic potentials.

Based on the nonlocal strain gradient form of the Kirchhoff–Love
shell theory and the first-order shear deformation (FSD) shell theory,
this paper analyzes the wave propagation characteristics in MEE na-
noshells subjected to thermo-electro-magneto-mechanical loadings. The
governing equations are derived by using the Hamilton's principle. The
dispersion relations of MEE nanoshells are obtained by solving an ei-
genvalue problem. Numerical results show that the nonlocal parameter,
length scale parameter, temperature change, external electric potential,
external magnetic potential and external load have important influence
on the wave propagation characteristics of MEE nanoshells.

2. The nonlocal strain gradient theory for MEE materials

The Eringen’s nonlocal theory [18–21] states that the stress field at
a reference point is assumed to depend not only on the strain at the
reference point but also on the strains at all other points in the whole
body. The strain gradient theory [22–25] assumes that the materials
must be considered as atoms with the higher-order deformation me-
chanism at micro/nano scale rather than just modeled them as collec-
tions of points. The nonlocal strain gradient theory takes into account
both nonlocal elastic stress field and strain gradient stress field by in-
troducing two scale parameters. For MEE nanomaterials, this theory can
be written as [41]:
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where σij, εij, Di, Ei B ,i Hi and ui are the stress, strain, electric dis-
placement, electric field, magnetic induction, magnetic field and dis-
placement components, respectively; ∼Φ and ∼Ψ are the electric potential
and magnetic potential, respectively; cijkl, emij, sim, qij dij, μij, pi and λi are
elastic, piezoelectric, dielectric constants, piezomagnetic, magneto-
electric, magnetic, pyroelectric and pyromagnetic constants, respec-
tively; βij and ρ are the thermal moduli and mass density, respectively;

TΔ is the temperature change; e a0 and l are the nonlocal parameter and
the length scale parameter describing the small-scale effect in MEE

nanostructure, respectively; ∇2 is the Laplace operator.

3. Wave propagation in nonlocal strain gradient MEE nanoshells

By using the nonlocal strain gradient theory for MEE materials, we
will develop two nanoshell models to analyze the size-dependent wave
propagation characteristics in MEE nanoshells. Fig. 1 shows an MEE
cylindrical nanoshell with the radius R and thickness h subjected to an
electric potential ∼Φ, a magnetic potential ∼Ψ, an axial load P0 and a
uniform temperature change TΔ . It is assumed that x θ z( , , ) is the co-
ordinate system fixed at the midplane of the nanoshell. The MEE na-
noshell is polarized along the thickness direction.

3.1. Nonlocal strain gradient Kirchhoff–Love shell model

Based on the Kirchhoff–Love shell theory, the displacements of an
arbitrary point in the shell along the x -, θ- and z- axes, denoted by
u x θ z t( , , , )x , u x θ z t( , , , )θ and u x θ z t( , , , )z , respectively, are
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whereU x θ t( , , ),V x θ t( , , ) andW x θ t( , , ) are the displacements of a point in
the midplane and t is the time.

The relations of strain and displacement can be written as
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The distributions of electric potential ∼ x θ z tΦ( , , , ) and magnetic po-
tential ∼ x θ z tΨ( , , , ) of MEE nanoshells are assumed as linear combinations
of cosine and linear variations, which satisfies the Maxwell equations
[42]. Then, we have
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where =β π h/ ; x θ tΦ( , , ) and x θ tΨ( , , ) are the variation of the electric
potential and magnetic potential at the midplane, respectively; ϕ0 and
ψ0 are the applied external electric potential and magnetic potential,
respectively.

With the aid of Eqs. (12) and (13), we can yield the electric field
E E E( , , )x θ z
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Fig. 1. Flexural wave propagation in an MEE nanoshell.
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