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A B S T R A C T

The periodic cellular topology characterizing the microscale structure of a heterogeneous material may allow the
finest functional customization of its acoustic dispersion properties. The paper addresses the free propagation of
elastic waves in micro-structured cellular materials. Focus is on the alternative formulations suited to describe
the wave propagation in the material, according to the classic canons of solid or structural mechanics. Adopting
the centrosymmetric tetrachiral microstructure as prototypical periodic cell, the frequency dispersion spectrum
resulting from a synthetic lagrangian beam-lattice formulation is compared with its counterpart derived from
different continuous models (high-fidelity first-order heterogeneous and equivalent homogenized micropolar
continuum). Asymptotic perturbation-based approximations and numerical spectral solutions are cross-vali-
dated. Adopting the low-frequency band gaps of the material band structures as functional targets, parametric
analyses are carried out to highlight the descriptive limits of the synthetic models and to explore the enlarged
parameter space described by high-fidelity models. The final tuning of the mechanical properties of the cellular
microstructure is employed to successfully verify the wave filtering functionality of the tetrachiral material.

1. Introduction

Periodic materials are characterized by a repetitive microstructure
realizing a regular pattern of elementary cells. The research interest in
these materials is being currently renewed for their high mechanical
performances and smart technological applications in the naval, aero-
space, nuclear, sport, biomedical engineering fields. The key of such an
exponential success can be recognized in their non-conventional, or
even extreme mechanical properties and tunable multi-purpose func-
tionalities [1,2].

Within the wide realm of microstructured periodic materials, two
leading research lines can be identified. The first line pays attention to
the homogenization or continualization in local and nonlocal continua
in which the overall constitutive tensors are determined by means of
standard or generalized macro-homogeneity conditions [3–10]. The
second line focuses on the assessment and customization of the acoustic
dispersion properties associated to the propagation of Bloch waves
across the material, either in its original periodic microstructure
[11–15] or in its equivalent homogenized form [8,9,16–19]. In this
respect, the periodic materials with a chiral or antichiral microstructure
of the elementary cell [20–22], consisting of stiff disks or rings, con-
nected by a variable number of flexible ligaments, are particularly at-
tractive for their potential as acoustic waveguides or phononic filters. In

the current literature dealing with this material class, the pass and stop
bands characterizing the band structures have been determined by
solving the dispersion problem related to low-dimensional lagrangian
models [23–28], high-fidelity micromechanical formulations ac-
counting for the material heterogeneity at the microscale [11,12,14,29]
and equivalent local and non-local homogenized continua [9,26–28].
The underlying idea is that, within certain physically admissible ranges,
the geometric and mechanical parameters can be intended as freely
tunable variables for customizing the acoustic dispersion properties of
the material. To this purpose, resonant auxiliary oscillators (local re-
sonators) can conveniently be introduced to realize acoustic metama-
terials, featured by an enlarged configuration space of active degrees-
of-freedom and a richer variety of tunable mechanical parameters
[14,27,29–31]. Among the others, common customization criteria are
the presence of selected harmonics in the band structure at a certain
wavenumber [32,33], the opening of maximum-amplitude band gaps in
the lowest possible frequency range [34–38], the maximal sensitivity of
the spectrum to microstructural defects [39,40], the occurrence of ne-
gative refraction properties [41,42].

Asymptotic techniques may allow the multiparametric approxima-
tion of the direct and inverse dispersion problem for low-dimensional
lagrangian models. Consequently, the conditions for the existence of
pass and stop bands can be determined in a suited analytical – although
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approximate – form [40]. The relative optimization analyses may
highlight how synthetic lagrangian models likely possess a low-di-
mensional parameter space, insufficient for the search of a satisfying
solution for inverse spectral problems.

The present paper is devoted at exploring the dispersion properties
of the tetrachiral material in the larger parameter space obtainable by
removing some of the simplifying mechanical assumption limiting the
simpler lagrangian model. Two alternative continuous models (high-
fidelity first-order heterogeneous and equivalent homogenized micro-
polar continuum) are derived in parallel to the lagrangian beam-lattice
formulation (Section 2). The frequency dispersion spectra resulting
from all the models are compared to each other and cross-validated
(Section 3). The qualitative and qualitative agreement between
asymptotic perturbation-based approximations and numerical spectral
solutions is discussed (Paragraph 3.1). Parametric analyses concerning
the effects of variations in the enlarged space of geometric and me-
chanical parameters on the acoustic and optical surfaces are carried out
(Section 4). Consequently, a satisfying tuning of the micromechanical
properties is employed to successfully verify the filtering functionality
of the material in the forced wave propagation (Paragraph 4.1). Con-
cluding remarks are finally pointed out.

2. Tetrachiral material

2.1. Beam lattice model

The class of chiral and antichiral cellular materials is characterized
by a periodic tessellation of the bidimensional plane. The elementary
cell is strongly characterized by a microstructure composed by stiff
circular rings connected by flexible straight ligaments, arranged ac-
cording to different planar geometries including the trichiral, hex-
achiral, tetrachiral, anti-trichiral, antitetrachiral topologies [22].
Among the others, the tetrachiral material is featured by a monoatomic
centrosymmetric cell in which the central stiff and massive ring (or
disk) is connected to four tangent flexible and light ligaments (Fig. 1a).
The periodic square cell has side length H . Each ring is mechanically
modeled as a rigid annular body with mass Mr , rotational inertia Jr ,
mean radius R and transversal width tr , (Fig. 1b). Each ligament is
mechanically modeled as a linear unshearable beam, with material
density ρb, transversal width tb and natural length =L H βcosb , where
the chirality angle =β R Harcsin(2 / ) is the ligament inclination angle
with respect to the ideal line connecting the centers of adjacent rings. A
linear elastic material, with Young’s modulus Eb is assumed for all the
beams.

The rigid body configuration is fully described by three planar active
degrees-of-freedom, collected in the generalized displacement vector

=q qa 1 (Fig. 1c), referred to the internal node located at the ring bar-
ycenter. Due to the geometric periodicity, the cell boundary crosses the
midspan of all the four ligaments. Consequently four external nodes are
located at the midpoint of all the cell sides, each one possessing three

planar passive degrees-of-freedom collected in the displacement vector
= …q q q( , , )p 2 5 .
Assuming the ligaments rigidly connected to the ring, a lagrangian

beam lattice model can be formulated. The free undamped vibrations of
the lagrangian model are governed by a linear equation, defined in the
full configuration vector =q q q( , )a p
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where dot indicates differentiation with respect to time and O stands for
different-size empty matrices. Adopting a lumped mass description, the
non-null mass submatrix M is diagonal. The symmetric submatrices Kaa

and Kpp describe the stiffness of the active and passive nodes, respec-
tively. The rectangular submatrix =K Kap pa

T account for the elastic
coupling among the active and passive nodes. The mass and stiffness
matrices are reported in details in the Appendix. The vector fp collects
the reactive forces exerted by the adjacent cells on the passive nodes.
The passive displacement and force vectors can be ordered and parti-
tioned as = − +q q q( , )p p p , = − +f f f( , )p p p to separate the variables − −q f( , )p p ,
related to the left/bottom sides of the cell boundary (composed by the
external nodes 2, 3 shown in Fig. 1c), from the variables + +q f( , )p p related
to the right/top sides (composed by the external nodes 4, 5). According
to this decomposition, the dynamic (upper) part of the Eq. (1) can be
written

+ + + =+ + − −Mq K q K q K q 0¨ a aa a ap p ap p (2)

whereas the quasi-static (lower) part can be written
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According to the Floquet-Block theory for two dimensional discrete
model [43], the quasi-periodic conditions governing the propagation of
planar wave can be imposed on the passive displacement/forces at the
cell boundary, requiring

= =+ − + −q L q f L f,p k p p k p (4)

where Lk is a square transfer matrix that can be expressed in the diag-
onal block form

= e eL I Idiag( , )k
ik H ik H1 2 (5)

where I is the 3-by-3 identity matrix, while k1 and k2 are the two
components of the wavevector = k kk ( , )1 2 , that is, the wavenumbers of
the horizontally and vertically propagating waves, respectively.

The conditions (4) can be introduced in the quasi-static Eq. (3) to
reduce the number of independent passive displacements [25]. There-
fore, the linear quasi-static laws

Fig. 1. Tetrachiral metamaterial (a) repetitive planar pattern, (b) periodic cell, (c) beam lattice model.
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