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A B S T R A C T

This paper proposes radial basis function (RBF)-based meshless solutions for static and dynamic analyses of
metallic and laminated beam-like structures with various boundary conditions. Making use of the Carrera
Unified Formulation (CUF), the three-dimensional displacement field can be reduced to one-dimensional dis-
placements related to the axial direction multiplied by cross-sectional kinematics. Locally supported Wendland’s
C6 RBF is employed to interpolate the displacements in the axial domain and Hierarchical Legendre Expansion
(HLE) is used to expand the kinematic unknowns over the cross-section domain, being endowed with Layer-Wise
(LW) ability. The principle of virtual displacements (PVD) is adopted to derive the governing equation in a strong
form, accompanied by the advent of fundamental nuclei, which are independent of the transverse assumptions in
the cross section domain. Different numerical assessments on metallic and laminated structures are addressed to
show the performance of RBF-based HLE models in terms of displacements, stresses and vibration modes. 3D
accuracy of the obtained results is demonstrated by comparison with 3D FEM solutions provided by well-known
commercial softwares (Ansys and Abaqus).

1. Introduction

Beams, as primary and secondary components, can be found in
many diverse engineering fields, such as aeronautical and aerospace,
mechanical, civil and ocean industries. During service lives, these
structures are subjected to various loading conditions, e.g. cyclic loads,
mechanical vibrations and impulsive loads. A better understanding of
resultant static and dynamic responses is of paramount importance for
the safe and optimal structural design. In theory, the accurate simula-
tion of these behaviours requires burdensome three-dimensional finite
element method (FEM). In order to resolve the issues related to high
computing costs radically, dimensional reduction models with en-
hanced analytical abilities are preferred and constantly improving for
the past several years. A brief, though not exhaustive, review is given
hereafter.

Classical 1D beam theories, known as Euler-Bernoulli (EBBM) and
Timoshenko (TBM) theories, has been widely adopted for the analysis
of slender homogeneous structures with bending-dominated deforma-
tion and a large number of fruitful results have been contributed by
considerable papers [1–4]. However, refined 1D models should be built
to capture more non-classical phenomena, such as warping, torsion and

coupling modes, which arise when beams with lower shear moduli in
comparison with Young’s moduli or with complex loading conditions
are considered. A possible scheme of advanced beam theories built by
different techniques can be summarized as follows: (i) insertion of
warping function; (ii) the Saint-Venant solution; (iii) the Variational
Asymptotic Method (VAM); (iv) the Generalized Beam Theory (GBT);
(v) Higher-order shear deformation models. A thorough review of re-
cent developments on refined beam theories is stated by Carrera et al.
[5]. Vlasov [6] initially developed the first version of thin-walled beam
theory, where the displacement field was improved via the introduction
of an extra warping function. Unfortunately, this assumption is only
applicable to the case of thin-walled beams with open cross-sections
subjected to the uniform torsion, bringing about the neglect of in-plane
deformations and the shear deformation of the middle surface [7].
Ferrero et al. [8] presented an analytical method to study the torsional
behaviour of thin-walled composite beams with midplane symmetric
under a twisting moment. This method can be extended to beams with
closed section and also constrained warping effect can be taken into
account, as well. Sapountzakis and his colleagues [9–11] investigated
non-uniform torsion of homogeneous and composite bars of arbitrary
variable cross-sections employing the boundary element method, in
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cases where the primary and second warping functions were in-
troduced. Starting from 3D Saint-Venant solution, El Fatmi [12,13] and
Ladeveze and Simmonds [14] presented a non-uniform warping beam
theory including three warping functions corresponding to torsion and
shear forces. GBT was first introduced by Schardt [15] for thin-walled
structures, in which the displacement of the mid-wall cross-section can
be described using a piece-wise function. The extension of GBT to
composite beams can be referred to [16]. VAM, introduced by Berdi-
chevskii [17] employs the series expansion of the characteristic para-
meter, such as the thickness of the cross section h, to obtain the beam
theory with known accuracy. As a viable alternative approach to re-
fined beam models, higher-order shear deformation models were in-
troduced to provide different distributions of the transverse shear
strains along the thickness. Ghugal [18] developed a trigonometric
shear deformation for the flexure and vibration analyses of thick iso-
tropic beams. Their model used the sinusoidal function in the dis-
placement field to represent the shear deformation effects, satisfying
the traction free boundary conditions at the top and bottom surfaces of
the beam. Analogously, hyperbolic, and exponential shear deformation
theories have been presented by various authors [19,20].

Beams composed of composite materials deserve special attention
due to their high strength and stiffness to weight ratios. They are in
general anisotropic and present discontinuous mechanical properties in
the layer thickness direction. So called zig-zag (zz) forms of displace-
ment fields, i.e., piece-wise distribution along the laminate thickness
direction as well as interlaminar continuity (IC) of transverse both shear
and out of plane components need to be addressed. A number of review
papers are available, see Kapania and Raciti [21] and Carrera [22,23].
These theories can be classified into two categories: Equivalent Single
Layer (ESL) and Layer-Wise theories, depending on the relation be-
tween computational costs and the number of layers. A short review of
the contribution which is useful for our propose is given below. Khedeir
and Reddy [24] developed analytical solutions of various refined beam
theories to study free vibration behaviour of cross-ply laminated beams
through ESL and concluded that EBBM gave less accurate results than
other theories. Kant and Manjunath [25] introduced a non-linear var-
iation of longitudinal displacements through the thickness via Taylor
Expansion (TE) and the results were compared with those from an
earlier investigation in terms of displacements, stresses and modes [26].
Karama et al. [27] proposed a new exponential shear deformation
theory in conjunction with the Heaviside step function to predict the
mechanical behaviour of multi-layered laminated composite beams.
The authors concluded that the property of exponential function was
better than sine and cosine functions and its LW ability improved the
accuracy of the transverse shear stress at layer interfaces. Shimpi and
Ghugal [28] presented a LW trigonometric shear deformation theory for
the analysis of two-layered cross-ply laminated beams. It was pointed
out that the number of primary variables was even less than that of
TBM. The extension of [28] to general lamination can be found in [29],
which used the Lagrangian linear interpolation functions to achieve LW
ability. In addition, various researchers employed zig-zag function
capable to capture the zig-zag phenomena in the displacement field
along the thickness [30,31].

Carrera et al. [32] introduced a unified beam theory, known as
Carrera Unified Formulation (CUF) for the mechanical analyses of
various types of beams. In the light of CUF, the displacement field can
be decomposed into the product of the cross section function and the
generalized displacement function related to the axial coordinate. Four
different expansions, i.e., Taylor Expansion (TE), Hierarchical Legendre
Expansion (HLE), Lagrange Expansion (LE) and Chebyshev Expansions
(CE) are usually adopted to characterise the cross section function. With
regard to CUF-TE, Carrera et al. [32] used a 1D beam element to ap-
proximate the generalized displacement function, being capable of
furnishing 3-D stress states of beams with solid and thin-walled cross
sections. The extension of the aforementioned isotropic and static
problems to anisotropic (composite material) case and free vibration

problems accomplished in the weak form can be found in literature
[33,34]. Moreover, the strength of the CUF- TE model solved by strong
form, i.e., radial basis function (RBF) and dynamic stiffness method
(DSM) concerning free vibration and thermal-mechanical analyses of
isotropic and composite beams can be referred to Pagani et al. [35,36]
and Giunta et al. [37]. In CUF-HLE, a set of Legendre functions were
defined in the natural coordinate system and mapped into the physical
coordinate system, obtaining both ESL and LW solutions. FEM appli-
cation of CUF-HLE to isotropic and laminated structures can be seen in
[38,39].

The application of other CUF models can be seen in [40–42]. The
present work focuses its attention on the development of a LW beam
theory that makes use of the CUF-HLE model in combination with RBF
solution. RBF method is a truly meshless method, first introduced by
Kansa [43] to solve the partial differential equations. Compared with
FEM, this method only places a cluster of nodes on the domain and
boundary with no need of mesh and its interpolation function is dis-
tance dependent, thus insensitive to the dimension. In recent years, it
has become an outstanding candidate for the solution of the partial
differential equations due to the merit of superior exponential con-
vergence, easy implementation and high accuracy. Subsequently, its
extensive use in the application of elastic problems (mechanical beha-
viours of beam, plate and shell) can be found in [44,45].

The rest of this paper is structured as follows: preliminary knowl-
edge on the anisotropic elasticity, CUF and HLE is introduced in Section
2; then, the strong form governing equation for static and free vibration
problems are derived in Section 3; the RBF method and its formulation
into CUF-HLE model are subsequently discussed in Section 4 and Sec-
tion 5; numerical assessments on mechanical behaviours of metallic and
composite beams are carried out in Section 6. Finally, the main con-
clusions and guidelines are remarked in Section 7.

2. Unified formulation of beam theories

2.1. Preliminary

Consider a generic 3D beam structure in the Cartesian coordinate
system with cross section Ω lying on the −x z plane and length L coin-
ciding with y-axis, as shown in Fig. 1. The 3D displacement field

x y zu( , , ), strain field ∊∊ and stress field σ can be written as:
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where index T is the transpose operator. The geometric linear relation

Fig. 1. Coordinate system for the beam structure.
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