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A B S T R A C T

This paper develops a three-dimensional (3D) isogeometric analysis (IGA) and meshfree coupling approach to
investigate the static, dynamic and buckling behaviors for plates and shells of functionally graded material
(FGM). The meshfree method and IGA are coupled using the higher-order consistency condition in the physical
domain so that the higher-order continuity of basis functions is guaranteed, and the topological complexity of
the global volumetric parameterization for IGA to build the 3D geometry can be overcome. By employing IGA
elements on the domain boundary and meshfree nodes in the interior domain, the approach preserves the ad-
vantages of the exact geometry and flexible discretization in the problem domain. Based on the coupling ap-
proach, the analyses for FGM plates and shells are carried out, and the effects of the material volume fraction, the
side-to-thickness ratio and the curvature of the cylindrical shell on the deflection, natural frequency, and
buckling load are investigated. The coupling approach is verified by comparing with the solutions obtained from
other existing theories.

1. Introduction

Functionally graded material (FGM) is a type of composite material
which possesses smoothly and continuously variable material proper-
ties in the thickness direction. The novel combination of material in-
gredients endows FGM with excellent mechanical performance char-
acteristics such as high strength-to-weight ratio, thermal and corrosion
resistance, and fatigue strength. Among FGM structures, plates and
shells occupy primary roles in engineering applications such as auto-
mobiles, aircrafts, nuclear power plants and medical apparatus.

As FGM plates and shells are increasingly applied to industrial
fields, various plate and shell theories have been proposed for the
structural analyses. Based on hypotheses for the shear deformation
distribution, the 3D geometry can be simplified as a two-dimensional
(2D) model for analysis. The 2D theory can be classified into three
categories: the classic theory [1], first-order shear deformation theory
(FSDT) [2,3] and higher-order shear deformation theory (HSDT) [4–8].
The classical theory that follows Kirchhoff-Love assumptions is only
suitable for thin plates and shells as it neglects the effects of the shear
deformation. The FSDT considers the linearly distributed transverse
shear deformation, while it may lead to the shear locking and non-zero
shear stress boundary condition. The HSDT circumvents the dis-
advantages of FSDT and obtains more accurate solutions by

incorporating high-order terms to approximate the displacement field.
Compared with the 2D theories, the 3D analysis models do not involve
simplifications and assumptions that may give rise to inaccurate solu-
tions [9]. The 3D theories not only achieve more reliable solutions but
also enable clearer physical insights [10]. Furthermore, the 3D models
can provide a full frequency spectrum for the dynamic analysis of FGM
structures [11,12]. The 3D static, dynamic and buckling analyses for
FGM structures have been conducted by numerous researchers [13–16].

To solve the 2D or 3D analysis formulations for FGM plates and
shells, a variety of computational methods have been developed, in-
cluding analytical solutions and numerical methods such as the finite
element method (FEM), meshfree method and isogeometric analysis
(IGA). The analytical solutions for the static and dynamic analyses of
FGM plates and shells can be found in [12,15,17–19]. The conventional
FEM is a powerful tool for the FGM structural analyses [20–24].
However, FEM still suffers from limitations such as mesh distortion at
large deformations, intensive remeshing requirements [25] and only C0

continuity between elements, which can be partially overcome by the
meshfree method and IGA.

The meshfree method employs a set of arbitrarily scattered nodes to
discretize the problem domain without connected elements. Compared
with FEM, the meshfree method can obtain a more accurate approx-
imation for complex structures, higher-continuity basis functions, and
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flexible local refinement. Among a variety of meshfree methods
[26–29], the reproducing kernel particle method (RKPM) [30] is one of
representative meshfree methods and has been utilized to solve solid
mechanics problems [31,32]. The applications of meshfree methods for
the analyses of plates and shells are reported in [33–38]. Additionally,
since the Kronecker delta condition is not satisfied in the meshfree
method which results in the difficulty to apply the essential boundary
condition, several improved meshfree methods have been proposed and
employed in the plate analyses [39–45].

IGA proposed by Hughes et al. [46], integrating computer aided
design and FEM, has attracted great attentions because of the exact
geometry representation, higher-order continuity, flexible k-refine-
ment, and robustness for the large deformation. IGA has been ex-
tensively applied for structural analyses [47–51], fracture mechanics
[52–54] and fluid mechanics [55]. IGA maintains the exact geometry
by using the non-uniform rational B-spline (NURBS) as basis functions
to create the geometric model, which is a great advantage for analysing
shells and complex structures [56,57]. In addition, the arbitrary con-
tinuity order of NURBS basis functions can be controlled, which is
needed for the HSDT [58–61].

To exploit the advantages of the meshfree method and IGA, the
coupling of the two methods has been developed recently. Wang et al.
[62] proposed a coupling of the B-spline basis functions and meshfree
shape functions using the reproducing conditions. Since it is defined in
the parametric domain, the global geometry parameterization is re-
quired. Rosolen et al. [63] combined the local maximum entropy
meshfree method and IGA in the physical domain, which concisely
addresses the volume discretization and flexible local refinement
simply. However, the coupling approach only satisfies first-order con-
tinuity. Considering the challenges in the two approaches, Valizadeh
et al. [64] developed an IGA-meshfree coupling approach using higher-
order consistency conditions in the physical domain, which preserves
the arbitrary approximation order of the coupling basis functions and
avoids the complexity of a global parameterization to build the 3D
problem domain. Therefore, in this work, the IGA-meshfree coupling
approach is used to develop 3D analysis formulations for FGM plates
and shells.

In this paper, a novel 3D IGA-meshfree coupling approach is de-
veloped to analyze FGM plates and shells. IGA is implemented for the
exact description of the geometric model on the domain boundary,
while the interior domain is discretized by meshfree nodes. This cou-
pling approach based on the higher-order consistency conditions is
established in the physical domain, which has higher-continuity basis
functions and alleviates the difficulty to construct 3D complex geo-
metry in the global parametric domain for IGA [64]. The effects of
material ingredients, boundary conditions, the plate thickness and the
curvature of the cylindrical shell on the deflection, natural frequency
and buckling load are investigated. Numerical examples are presented
to demonstrate the efficiency and accuracy of the coupling approach.

This paper is outlined as follows. The following section introduces
the coupling of the meshfree method and IGA. In Section three, 3D
formulations for FGM plates and shells analyses using the IGA-meshfree
coupling approach are presented. Several numerical examples for FGM
plates and shells are given in Section four. Finally, conclusions are
drawn in Section five.

2. IGA-meshfree coupling approach

The basis functions for the NURBS-based IGA and RKPM are pro-
vided in this section. The IGA and RKPM are coupled in a narrow
boundary region using the consistency conditions.

2.1. NURBS basis functions

NURBS basis functions are built on B-spline basis functions by the
projective transformation. In the parametric coordinate, B-spline basis

functions are expressed by a non-decreasing set of knot values called
knot vector Ξ={ξ1, ξ2, …, ξn+p+1} (ξi ∈ ), where p is the polynomial
order and n is the number of basis functions. Starting from the order
p=0, the recursive form of the B-spline basis functions is defined as
[46]:
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As three sets of knot vectors Ξ={ξ1, ξ2, …, ξn+p+1}, Η={η1, η2,
…, ηm+q+1} and П={ζ1, ζ2, …, ζn+p+1} are given in the ξ, η and ζ
directions, respectively, 3D NURBS basis functions are obtained by
using the tensor product:
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where wi, j, k is the weight, and Ni, p, Mi, q and Lk, r are the basis func-
tions. The NURBS solid is expressed as
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where m, n and l are the numbers of basis functions in the ξ, η and ζ
directions, respectively, and Pi, j, k is the control point.

2.2. RKPM basis functions

In the physical problem domain discretized by a set of particles
=x{ }i

N
i 1

P , where NP is the number of meshfree particles, the RKPM basis
functions [31] are defined as
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where ϕa is the kernel function [65]:
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where r0 is the radius of spherical support domain for the 3D geometry,
which is calculated as follows:
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where λ is the scaling factor taken as 2.5 and d is the maximum distance
of adjacent nodes in three axial directions.

The correction function C(x, x− xi) is expressed as a linear com-
bination of polynomial basis functions:
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where the quadratic polynomial is used in this work:
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and the unknown coefficient b(x) is determined by imposing the pth
order reproducing conditions as follows:
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The substitution of Eq. (5) into Eq. (10) results in:
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where the moment matrix M(x) are given as
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