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A B S T R A C T

Many researchers have performed impact localization using multiplexed fiber Bragg grating (FBG) sensors for a
unique estimation of impact position. However, the previous impact localization did not show the methodology
to choose the location with the lowest error among candidate impact points, estimated from sensors. We propose
an error-outlier-based algorithm with Pugh’s concept selection that can choose the impact point with the lowest
error among several candidate impact points. The proposed impact localization algorithm was implemented for
30 arbitrary points on a carbon-fiber-reinforced polymer composite plate with two bonded FBG sensors. The
results showed that the proposed algorithm could efficiently localize all impact points. Additionally, it could
successfully choose the impact point with lower error among two candidate impact points estimated from the
two sensors. The accuracy of selection was 93.33% and the totally estimated averaged-error for the selected
sensors by Pugh’s concept selection for all tests was 6.24mm. Therefore, we conclude that the proposed impact
localization algorithm is effective in localizing the impact points with the lowest errors when multiplexed
sensors are used, regardless of the type of sensor. This technique will contribute to reducing measurement errors
when localizing impact points on composite structures.

1. Introduction

Composite materials have quickly replaced conventional materials
in many fields, including the aerospace, maritime, civil, automobile,
and wind industries, because they have outstanding specific stiffness
and specific strength, low weight, low density, and corrosion and fa-
tigue resistance [1]. However, composite structures are prone to in-
ternal or external damage from unexpected external loads. Among such
external loads, low-velocity impacts (e.g., bird strike or drop of tools)
are detrimental to the structural safety of composite structures because
they can induce barely visible impact damage (BVID) including dela-
mination, matrix cracking, and fiber breakage [2–4]. Generally, BVIDs
do not directly result in structural failure; however, they can progress
gradually and degrade mechanical properties during operation.

Many researchers have performed impact localization to reduce the
risk of BVIDs in composite structures using optical-fiber sensors (OFSs)
[5–15], which have several advantages [16,17]: high reliability, small
size, multiplexing capability, corrosion resistance, and immunity to
electromagnetic interference. Schindler et al. [5] demonstrated impact
localization for an anisotropic polymer matrix composite panel with
three embedded extrinsic Fabry-Pérot interferometer sensors by using a

neural network algorithm. Coelho et al. [6] and Augustin et al. [7]
proposed an impact localization algorithm based on the maximum
strain amplitude obtained from fiber Bragg grating (FBG) sensors
during impact and verified it through application to a graphite/epoxy
composite wing and composite laminate structures. Sai et al. [8] de-
veloped an impact localization algorithm independent of wave velocity
for a composite plate using six FBG sensor arrays. Kim et al. [9] loca-
lized the impact points for a stiffened composite panel with four FBG
sensors by applying the normalized cross-correlation method. Lee et al.
[10] used a root-mean square (RMS) value-based algorithm to detect
the impact location for pipe structures with a large curvature by using
six FBG sensors. Lu et al. [11] studied least-squares support vector
machine (LS-SVM) modeling for impact localization on a carbon-fiber-
reinforced polymer (CFRP) composite plate using four FBG sensors.
Lamberti et al. [12] implemented the impact localization on the stif-
fened composite panel using the improved fast phase correlation (FPC)
algorithm with a variable selective least squares (VS-LS) inverse solver
approach. Of particular interest is that they successfully localized im-
pact points using the embedded FBG sensor network. Rezayat et al. [13]
also used FBG sensors and VS-LS algorithm for the impact localization
and the reconstruction of impact force. Jang et al. [14] and Park et al.
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[15] localized the impact points on the composite structures using the
multiplexed FBG sensors. They used the arrival time determination al-
gorithm of impact wave and the neural network algorithm for impact
identification. Shrestha et al. [18,19] first developed an error-outlier-
based impact localization algorithm and demonstrated it for composite
structures (e.g., a CFRP composite plate and an aircraft wing) using FBG
sensor arrays. All researchers mentioned above successfully demon-
strated impact localization for various structures using multiplexed
OFSs for a unique estimation of impact position. However, the pre-
viously studied impact localization did not show the algorithms to
choose the location with the lowest error among candidate impact lo-
cations estimated from multiplexed FBG sensors. The capability of se-
lecting the appropriate sensor (or impact location with a lower error) is
very important because it directly corresponds to a performance index
of the impact localization algorithm.

This study proposes an alternative impact localization algorithm,
i.e., an error-outlier-based impact localization algorithm with Pugh’s
concept selection [20] that can localize the impact point with the
lowest error among the several candidate impact points estimated from
multiplexed sensors. Pugh’s concept selection, a type of prioritization
matrix, was first proposed by Pugh in 1981 [20] and is associated with
quality function deployment (QFD). Pugh’s concept selection can be
used to choose a more exact impact point by estimating the ranks of key
parameters in the impact localization algorithm. First, we used the
error-outlier-based impact localization algorithm to localize arbitrary
impact points on a CFRP composite plate with two surface-bonded FBG
sensors. Subsequently, we adopted Pugh’s concept selection to choose
the impact point with the lower error among two candidate impact
points determined from two FBG sensors, and we estimated the accu-
racy of selection.

2. Error-outlier-based impact localization algorithm

Many impact localization methods exist, such as the RMS method
[10,21,22], the correlation method [9,21], the error-outlier-based
method [18,19], and the others [5–8,11–16]. Among the several dif-
ferent impact localization algorithms, we adopted the error-outlier-
based impact localization algorithm for impact localization on a com-
posite plate. Fig. 1 shows a flowchart of the error-outlier-based algo-
rithm [18,19] with Pugh’s concept selection [20]. This algorithm re-
quires reference signals (RS(tRN, FN)) and arbitrary impact signals (AIS
(tAIN, FN)). The RSs are acquired in advance by striking all reference
points with an impact hammer, and the AISs are measured by striking
arbitrary impact points. All impact signals are normalized by their
maximum absolute values before comparing the RS and AIS. Moreover,
the RS is time-shifted by increasing the time step from 1 to 200 (i.e.,
TIS= 1:200), which can improve time coherence during signal com-
parisons and results in better results for errors and outliers. Subse-
quently, the RS and AIS are compared to obtain their differences. The

error-outlier-based method is a signal comparison technique that uses
the difference between two signals (i.e., RS and AIS). The errors are
calculated by subtracting the magnitude of AIS from that of RS as fol-
lows:

= −E t RS t AIS t( ) || ( )| | ( )||,RN FN TIS N RN,FN,TIS N AIN FN, , , (1)

(see the nomenclature list for symbol and subscript definitions). Errors
are the dissimilar parts between the magnitudes of AIS and each RS.
Outliers (O(tRN, FN, TIS)) are defined as the errors that exceed the lim-
iting value of 0.325 determined by test trails. The limiting value can be
altered by the other parameters of experiments and impact localization
algorithm, but we experimentally verified that 0.325 it is effective for
the given conditions in our study. Using this definition, the minimum
outliers (Omin(RN,FN)) among the calculated outliers (O(RN,FN,TIS))
are estimated.

The several selected reference points (RNS(FN)) for each FBG
sensor, whose outlier values are under the summation of the smallest
outlier (Owhole_min(FN)) and the constant level of the outlier
(CLO=115), are estimated to determine the impact location. The de-
termination procedure of the CLO is described in Section 5.1.1. The
number of RNS can be more than one and its optimal number need to be
determined. If the maximum number of RNs is four and five RNs are
selected, then only four RNs with the smallest outliers are survived. The
determination procedure in details of how many RNS should be selected
is described in Section 5.1.2. After calculating RNS, the Euclidean dis-
tance threshold criterion [19] is used to reduce the area of possible
locations in the error outlier algorithm. This is performed in two stages.
In the first stage, the distance between the averaged coordinates (for x
and y) of RNS and each coordinate of RNS are estimated. Subsequently,
RNS values with distances greater than a predetermined threshold dis-
tance (EDx=EDy=200% of the grid size= 90mm) are excluded from
the next step of the calculation. In the second stage, the Euclidean
distances are estimated by calculating the distances between the aver-
aged coordinates of RNS and each coordinate of RNS that has survived
the first stage. Then, RNS values with a Euclidean distance greater than
54mm (i.e., 120% of the grid size) are excluded from the final proce-
dure of impact localization. Finally, the locations of the impact points
are determined by averaging the x and y coordinates of the surviving
RNS values.

3. Pugh’s concept selection

Pugh’s concept selection, a type of prioritization matrix, is associated
with QFD. The procedure followed in Pugh’s concept selection for impact
localization in the proposed algorithm is Fig. 1. In Pugh’s concept se-
lection algorithm, the evaluation items must be determined and their
importance value (I-value) and step value (S-value) must be constructed
in advance. The number of the selected reference points (NRS) is de-
termined as a first evaluation item because impact localization is

Nomenclature

AIN arbitrary impact point number
AIS arbitrary impact signal
AISN normalized arbitrary impact signal
CLO constant level of outlier
DE newly defined distance error
E error
EDx Euclidean distance for x coordinate
EDy Euclidean distance for y coordinate
FN FBG number
I importance value
IO integration of outlier
IP impact point

NRS number of selected reference points
O outlier
Omin minimum outlier for each reference
Owhole_min minimum value of all Omin for each sensor
R rank value
RN reference number
RNS selected reference number
RSN normalized reference signal
RP reference point
S step value
t time
TIS time increment for shift
VO variance of outlier
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