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A B S T R A C T

An extended Ritz formulation for the analysis of buckling and post-buckling behaviour of cracked composite
multilayered plates is presented. The formulation is based on: (i) the First-order Shear Deformation Theory to
model the mechanics of the multilayered plate; (ii) the von Kármán’s theory to account for geometric non-
linearities; (iii) the use of an extended set of approximating functions able to model the presence of an embedded
or edge crack and to capture the crack opening fields as well as the global behaviour within a single cracked
domain. The numerical results of the buckling analyses and the equilibrium paths in the post-buckling regime are
compared with the results from finite elements simulations, confirming the accuracy and potential of the for-
mulation.

1. Introduction

Multilayered composite plates are widely and effectively employed
in a broad range of structural engineering applications. With respect to
metallic structures, they provide the engineer with a wider set of design
parameters [1] such as the stacking sequence, the layers’ thickness and,
more recently, the possibility of spatially varying the fibers orientation
within a single layer using variable angle tow technologies [2,3].
Thanks to their high stiffness-to-weight and strength-to-weight ratios,
composite plates are typically used as structural components in thin-
walled structures that have to comply with lightweight requirements,
e.g. in the aerospace sector; for such a reason, they can undergo
buckling and post-buckling deformations [4], which must be reliably
predicted during the design process. This is particularly relevant when
the design of thin-walled structures must also comply with damage
tolerance provisions and therefore the presence of damage must be
considered. In fact, the presence of cracks in thin plates can induce non-
trivial mechanical behaviours: as an example, a crack in a thin plate
subjected to tensile stress can induce local buckling around the crack
tips and significant amplification of the stress intensity factors [5] as
well as different non-trivial fracture opening modes.

The analysis of thin-walled structures with multilayered composite
plates generally requires the use of numerical models, due to the
complex interactions between various design parameters and the dif-
ficulty in obtaining closed form solutions for general boundary condi-
tions. The Finite Element Method (FEM) represents the standard

technique employed to model buckling and post-buckling behaviour of
undamaged and damaged composite plates. However, finite elements
solutions heavily rely on the quality on the employed mesh, which must
be carefully generated in order to conform to the geometry and capture
the gradients of the unknown fields. These aspects are even more cri-
tical in fracture mechanics problems.

In the literature, a technique developed to overcome some draw-
backs of standard FEMs is the Extended Finite Element Method (XFEM),
which was originally proposed by Belytschko and coworkers [6,7] and
then successfully employed by many researchers to address, besides
crack problems in two- and three-dimensional bulk domains [8–10],
fracture mechanics problems in thin-walled structures. Examples are:
fracture mechanics of isotropic Mindlin plates [11]; crack propagation
coupled to cohesive zone modelling in non-linear thin shells [12];
fracture in thin shells using an extended isogeometric approach [13];
buckling analyses of cracked isotropic [14] and composite [15] plates
and frequency analyses of cracked functionally graded plates [16].
XFEM is formulated within a FEM framework and assumes the un-
known fields to be written as a sum of standard contributions, which
correspond to the classic finite elements approximation based on ele-
mental shape functions and unknown nodal values, and enrichment
contributions, which account for the presence of the (crack) dis-
continuity. By suitably choosing the enrichment functions, the un-
known fields affected by the presence of a crack or discontinuity can be
accurately modelled. A typical example is provided by a cracked solid
modelled within the linear fracture mechanics hypotheses; in this case,
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the set of enrichment functions are based on the theoretical asymptotic
solution, i.e. on the square root behaviour of the displacement field
with respect to the distance from the crack tip (see e.g. [17]). Although
the mesh need not conform to the crack morphology, XFEM studies
usually employ smaller mesh elements in the vicinity of the crack tip in
order to ensure an accurate solution and avoid an excessive number of
degrees of freedom.

As an alternative to finite elements approaches and with the aim of
simplifying data preparation and meshing efforts, several researchers
have proposed numerical models based on the Ritz method. In Ritz
approaches, the sought unknown fields are expanded in series using a
set of suitably defined functions, whose coefficients represent the un-
knowns of the discrete problem. The accuracy and versatility of Ritz-
based numerical models has been demonstrated in studies dealing with
the frequency and buckling response of both thin and thick plates
[18–21] and with the post-buckling behaviour of thick plates [22]. Ritz-
based models have also been used for studying the buckling and post-
buckling behaviour of thin plate assemblies [23–25] and the free vi-
brations and buckling modes of stiffened shells [26,27].

To include the presence of a crack, the Ritz method has been em-
ployed in combination with the multi-region approach. In the literature,
examples are available for free vibrations [28–32], buckling analyses
[33,34] and post-buckling response [35–38] of plates and stiffened
plates. Single-domain Ritz-based formulations are very rare in the lit-
erature and are limited to linear analyses of free vibrations and buck-
ling modes of cracked plates [39–42]. To the best of the Authors’
knowledge, single-domain formulations for non-linear analysis of
cracked multilayered composite plates are not available in the litera-
ture.

This works presents a novel single-domain formulation based on the
First-order Shear Deformation Theory (FSDT) and the von Kármán’s
theory hypotheses [43] to model the buckling and post-buckling be-
haviour of cracked multilayered composite plates. The formulation,
termed X-Ritz, combines the advantages of both the Ritz method and
the XFEM strategy, as it is obtained by enriching the Ritz series ex-
pansion with suitably defined crack functions that allow to resolve the
presence of either an embedded crack or an edge crack in multilayered
quadrangular plates. As a consequence, it has the advantage of a very
simple preprocessing stage, as it only requires the geometrical in-
formation on the plate and the crack. A broad campaign of numerical
tests verifies its accuracy and flexibility.

The paper is organised as follows: Section 2 introduces the geome-
trical features of cracked multilayered composite plates as well as the
notation to model their non-linear behaviour under the hypotheses of
the FSDT and von Kármán’s theory; Section 3 describes the proposed
single-domain extended Rayleigh-Ritz formulation; Section 4 collects
and discusses the performed numerical tests aimed at verifying the
accuracy of the proposed formulation for both buckling and post-
buckling analysis of cracked plates; eventually, Section 5 draws some
conclusions.

2. Notation and basic equations

Let us consider a cracked planar quadrilateral composite plate re-
ferred to a Cartesian coordinate system Oxyz, with the x- and y-axes
parallel to the plate’s plane and the z-axis along the plate’s thickness. In
this reference system, the plate occupies the volume × h hΩ [ , ]b t where

=z hb and =z ht denote the heights of the bottom and top surfaces of
the plate, respectively, and Ω is the projection of the plate onto the
plane =z 0, which is usually referred to as the modelling plane. The
domain Ω is defined by the position of its four vertices

= = …V V V α{ , } , 1, , 4α
x y

α( ) ( ) and by the two crack tip points T (1) and
T (2) as shown in Fig. 1.

An embedded crack is identified by the points T (1) and T (2) located
within the quadrilateral plate domain, whereas an edge crack corre-
sponds to one point located within the domain and the other one lying

on one of the plate edges, as shown in Figs. 1b and c respectively. To
simplify the expression of the enrichment crack functions, it is con-
venient to define a polar coordinates system r θ{ , }1 1 centered at the tip of
the edge crack, see Fig. 1c, or two polar coordinates systems r θ{ , }1 1 and
r θ{ , }2 2 centered at the tips of the embedded crack, see Fig. 1b.

On the other hand, as shown in Fig. 1a, the multilayered plate
section consists of L laminae stacked together in such a way that the
bottom surface of the k-lamina lying at = 〈 〉z hb

k coincides with the top
surface of the −k( 1)-lamina lying at = 〈 − 〉z ht

k 1 . The generic k-th lamina
is assumed orthotropic and having one material axis aligned with the
plate’s z-axis and the other two axes generally oriented with respect to
the x- and y-axis by means of the orientation angle 〈 〉θ k , which coincides
with the fibers’ direction.

According to the First-order Shear Deformation Theory, the dis-
placement field =d d x y z( , , ) in the reference system Oxyz is expressed
in terms of the generalized displacements u v w, , , ϑx and ϑy by [4]

= +d x y z u x y z x y( , , ) ( , ) ϑ ( , )x x (1a)

= +d x y z v x y z x y( , , ) ( , ) ϑ ( , )y y (1b)

= +d x y z w x y w x y( , , ) ( , ) ( , )z (1c)

where u v w, , are the components of the displacement field of a point
on the modeling plane; ϑ , ϑx y are the rotations of a segment normal to
the modeling plane about the y- and x-axis, respectively; and w ac-
counts for an initial imperfection of the plate. Eqs. (1) can be written in
compact form, see e.g. [35], as follows

= + +d u ϑ ux y z x y z x y x y( , , ) ( , ) ( , ) ( , ) (2)

where ≡ ≡u ϑu v w{ , , } , {ϑ , ϑ , 0}T
x y

T and =u w{0, 0, }T .
The plate deformation is expressed by means of the Green-Lagrange

strain tensor, whose components are suitably partitioned into in-plane
components ≡e e e e{ , , }p xx yy xy

T and out-of-plane components
≡e e e e{ , , }n xz yz zz

T . According to the von Kármán’s assumptions, the
retained non-linear terms of strains are those involving the derivatives
of the displacement component dz with respect to the in-plane variables
x and y [4]. Following Milazzo and Oliveri [35] and remembering that
the initial imperfection is assumed small, ep and en can then be written
in terms of the generalized displacements introduced in Eq. (1) using
the following compact notation

= + ⊗ + ⊗ + = + ∼ +e u u u ϑ ε ε κw w z z1
2

( ) ( )p p p n p n pD D D D D D

(3a)

and

= + + = +e u ϑ u γ γ ,n n nD D (3b)

respectively, where the symbol ⊗ denotes the Kronecker product and
the following generalized strain fields have been defined:

= + ⊗ε u uw( )( ),p p nD D D (4a)

=κ ϑ,pD (4b)

∼ = ⊗ε uw( )( )/2,p nD D (4c)

= +γ u ϑnD (4d)

=γ u;nD (4e)
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It is worth noting that, according to Eqs. (3a) and (3b), the shear
components of e, i.e. e e,xy xz and eyz, are twice the components of the
Green-Lagrange strain tensor as defined classically. The mechanical
variable associated to the Green-Lagrange strain tensor is the second
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