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A B S T R A C T

This work presents the free vibration analysis of tapered aircraft structures made of composite and metallic
materials, with reference to global and local damage. A refined one-dimensional model, developed in the fra-
mework of the Carrera Unified Formulation, has been used to provide a detailed description of structures. Multi-
component aeronautical structures have been modeled adopting Lagrange polynomials to evaluate the dis-
placement field over the cross-section. Each component has been described through the component-wise ap-
proach, with its own geometrical and mechanical characteristics. The effects of localized damage have been
investigated, thanks to the accuracy of the layer-wise models adopted. The model has been assessed by com-
paring the results with classical FE models. The results show that the present approach provides an accurate
solution for the free vibration analyses of complex structures and is able to predict the consequences of a global
or local failure of a structural component. The computational efficiency and the accuracy of the model used in
this work can be exploited to characterize the dynamic response of complex composite structures considering a
large number of damage configurations.

1. Introduction

Aeronautical structures are composed of several components that
distribute the loads they undergo. An increasing number of aeronautical
parts are made of composite materials for weight saving purposes. It is
clear that, given the multi-component nature of these kinds of struc-
tures, if one component fails, the stress distribution and the structural
behavior changes according to the entity of the damage. The knowledge
of these effects is a crucial point in the design process to increase the
structural reliability and the safety factor. Moreover the timely damage
detection of damage is important for maintenance programs. Several
nondestructive tests, such as ultrasounds or the magnetic field test,
already exist. However, an estimation of the location of the damage is
required to increase the efficiency of these methods. The presence of the
damage affects the dynamic response of a structure, and the variations
in the frequencies and modal shapes can be used to detect structural
damage. Several works on this kind of damage detection have been
proposed. Zhang et al. [1] and Capozzucca [2] proposed analyses of
damaged composite beams, studying vibration behavior. The work of
Wang [3] used an FE method to detect damage in wind turbine blades
considering variations of the modal shape curvatures. Nguyen [4]
proposed a study on the detection of damage in which calculating the
modal shapes were calculated using three-dimensional beam elements.

Pollayi and Yu [5] investigated the mechanical behavior of a damaged
rotor and wind turbines using beams, on the basis of the geometrically
nonlinear 3-D elasticity theory and the variational asymptotic beam
sectional analysis (VABS). Pérez et al. [6] adopted a different approach
and performed extensive experimental analyses on the vibration of
damaged laminates. The presence of damage and the characteristics of
the damage can be estimated by referring to a database that includes
information on the natural frequencies and model shapes of a wide
spectrum of damaged cases, using accurate measurements of the real
structure. This database can only be achieved through mathematical
model analyses because a great deal of experimental proofs is not re-
commended because of time and money constraints. These models
should be able to provide very accurate displacement and strain/stress
fields. Damage introduces local and non-classical effects, which cannot
always be detected by the conventional FE models that are used in the
aeronautic field. A three-dimensional analysis is required to provide
accurate results, but this can lead to huge computational costs. In this
work, an advanced beam model based on the Carrera Unified For-
mulation is proposed to deal with damaged structures in order to obtain
accurate results, but with low computational costs expressed in terms of
Degrees of Freedom (DOFs). Classical theories, such as the Euler-Ber-
noulli beam model [7] or the Timoshenko beam model [8], are not
suitable for damage detection. In the last few years, many works have
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been proposed to extend the application of one-dimensional models to
any geometry, boundary condition or, mechanical complexity. In the
aeronautical field, for aerodynamic reasons, particular shapes such as
tapered shape or twist angle, are used. These factors increase the
structural complexity and, as a result, more complex models are re-
quired. Tapered shapes are considered in this work. In this way, if the
beam axis is placed in the y-axis direction, the bending stiffness EI y( )
changes along the axis. The classical approximation introduced to deal
with such geometries is a step-by-step approach, which involves the
subdivision of the structure into several rigidly prismatic beams with
different cross-sections. The approximation is improved by increasing
the number of subdivisions. Analytical methods, [8]9 are used to in-
troduce the shear stress of a tapered beam. After the introduction of the
FE method, several works have been proposed. A modified stiffness
matrix for tapered components has been proposed by Just [10]. This
work uses modified displacement functions which consider the varia-
tions in the proprieties of the sections. Brown [11] presented a stiffness
matrix formulation for a linearly tapered beam, while Schreyer [12]
proposed a beam theory for tapered beams, in which the shear strain is
considered Many works have been proposed about aeronautical struc-
tures in the framework of the Carrera Unified Formulation. In the
present 1-D CUF model, the displacement field over the cross-section is
described through expansion functions. This feature allows the model to
deal with arbitrary geometries, materials, and boundary conditions.
After the first models, which were based on Taylor expansions, La-
grange polynomials were introduced. In this way, multi-component
structures can be modeled through ad hoc formulations of each com-
ponent (Component-Wise approach) [13]. Some of the works about this
approach and its capability in the aerospace field are those of [14–16].
The work of [17] deals, through the CW approach, with different
prismatic structures made of an isotropic material; several types of
damage were considered. The frequencies were evaluated for each case
and the modal shapes were compared using MAC (Modal Assurance
Criterion)[18]. This criterion has already been employed in the civil
field (damaged bridges) by Salawu and Williams [19]. The extension of
the models to tapered structures has been proposed in [20,21].

In this work some aircraft structures with a tapered shape are
analyzed using a 1-D CUF model, considering different types of damage.
The paper is organized as follows. A first part concerns the one-di-
mensional model: the theory, finite element solution and model of the
damage are presented. Subsequently, several results are discussed and,
finally, the main remarks are presented.

2. Refined one-dimensional models formulation

The damage detection through free vibration analyses requires
models with three-dimensional capabilities able to deal with complex
local phenomena. Here, the Carrera Unified Formulation is presented to
develop a one-dimensional refined model able to deal with this topic.
After some preliminaries, the basis and the advantages of the CUF are
presented in this section, finally, the damage modeling approach is
introduced.

2.1. Preliminaries

At first, it’s necessary to define the work space of this formulation.
Two frames are used to achieve the model of a structure. The first frame
x y z( , , )G G G is the global coordinate system of the three-dimensional
space. The beams formulation is derived at the local level, respect a
second frame x y z( , , ). y is the local beam axis and x z, represent the plane
of the beam cross-section. The beam model derived at the local level
can be arbitrary placed in the space using rotations and translations.
These frames are shown in Fig. 1a.

The reference system (1,2,3) is the material reference system. The
local displacement vector is expressed as:

=u x y z u u u( , , ) { }T
x y z (1)

The stress vector σ and the strain one ∊∊ are achieved as:

=σ x y z σ σ σ τ τ τ( , , ) { , , , , , }T
xx yy zz xy xz yz (2)

= ∊ ∊ ∊ ∊ ∊ ∊x y z( , , ) { , , , , , }T
xx yy zz xy xz yz∊∊ (3)

The strain vector is defined with the following linear strain–displace-
ment relation:

= bu∊∊ (4)

where b is a differential operator (a ×6 3 matrix). The components of
this matrix can be found in the book by Carrera et al. [22].

Hook’s law provides the stress vector defined with the following
equation:

=σ C ∊∊ (5)

where C is the ×6 6 material coefficient matrix. It’s a symmetric ma-
trix, then =C Cij ji. C changes the components respect the kind of con-
sidered material. A anisotropic material which has a different behavior
in any direction, is composed of 21 independent coefficients. Instead, if
the proprieties are the same along three perpendicular planes, the
material is defined as orthotropic material and the coefficients become
nine components. In this case, the matrix C is defined as:
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The matrix are composed by 12 terms, but due to the symmetry of the
matrix, = =C C C C,12 21 13 31 and =C C23 32. For this reason the matrix is
reduced to 9 components. With this type of material, the preferential
direction of the material should be defined. For this reason, a third
reference system is introduced referred to the material. This frame is
figured in 1b. An example of an orthotropic material is a fiber-re-
inforced layer. This layer lies on the plane 23 which is parallel to the
plane xy. The axis 1 is aligned with the z-axis. Considering the axis 3 as
the fiber direction, this one can be rotated with an angle of θ respect the
y-axis. A positive counterclockwise rotation is considered. The present
formulation allows the material to be oriented in an arbitrary direction
to achieve particular lamination. As a consequence the transformation
matrix T is introduced:
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A transformed material stiffness matrix is introduced and it is expressed
with the following form

=∼C TCTT (8)

This is the new stiffness matrix to be introduced in the Hooke’s law.

= ∼σ C ∊∊ (9)

If the material has the same behavior in all directions, it is a isotropic
material. Over any direction, the material provides the same behavior.
In this case, there is no need to define a material reference system and a
rotation matrix. The performance of the material can be described with
only one value of the Poisson ratio and of Young’s modulus. These as-
sumptions lead to have

= = = = = =C C C C C C C C C11 22 33 12 13 23 44 55 66 (10)

The explicit forms of C terms can be found in the books by Tsai [23] or
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