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A B S T R A C T

To assess a load-carrying capacity of compressed thin-walled plate structures in the paper the coupling buckling
phenomenon of compressed columns was analyzed. The columns were of open cross-sections and made of
coupled laminate. Selected configuration of laminate layers enables different types of coupling between mem-
brane and bending states which describes the coupling stiffness submatrix B. Element values of stiffness matrix
ABD were determined with application of classical laminate plate theory CLPT.

The main aim of the work is to estimate an influence of chosen submatrix B elements on buckling, post-
buckling and load-carrying capacity of analyzed thin-walled structures. The problem was solved with the Koiter’s
theory application. The detailed computations were performed for uniformly compressed lip channel and top hat
channel. The dimensions of both columns were chosen in a way which allowed to observe the strong coupling
effect among different buckling modes. It were two laminate configurations considered which differed in value
of stiffness reduction coefficients.

1. Introduction

Development of hydro-thermally curvature-stable laminates [1–3]
caused that in a design process it is possible to analyze laminates of
arbitrary layer sequences. Elements made of this type laminates can be
manufactured on industrial scale with the autoclave technology. During
this process pre-impregnated fiber reinforced laminas are assembled in
patterns and cured in elevated temperature and pressure. This type
laminates do not warp during warming and cooling. However they are
prone to lay-up errors which lead to internal loads and even in extreme
case to deformations. The residual loads can be observed by cut-out
holes which undergo different types of deformations.

Application of laminate elements characterized by arbitrary layer
arrangements allows to wider tailoring their mechanical properties but
is a challenge due to coupling effects present in general laminates. This
effect is based on that a membrane load can exert a curvature change
whereas moments can cause in-plane deformations and vice versa
[4–5]. The laminate lay-up has a crucial influence on existing types of
mechanical coupling. Thus it is possible such a laminate configuration
which will express chosen membrane couplings, i.e. extension-shear
coupling effect [6–7], bending state couplings, i.e. bending-torsion
coupling effect [8], or chosen membrane and bending state couplings,
i.e. extension-twisting or bending coupling effects [9]. Type of obtained

effects is imposed by the completeness of stiffness matrix ABD which
can be determined with the classical laminate theory application [4–5].
For the coupling of membrane state are responsible elements of matrix
A. The coupling of bending state is defined by matrix D elements.
Different cases of coupling between membrane and bending states are
an effect of nontrivial matrix B elements. A behaviour of arbitrary la-
minate is different as symmetric laminates or laminates with no me-
chanical coupling present.

In the literature known to the authors one can find a few works
analysing the behaviour of thin-walled structures made of laminates
exhibiting the effect of mechanical coupling. Vibrating and/or rotating
elements [10–12] or subjected to stability loss [13–16] were in-
vestigated. The coupling of the membrane and bending states was only
taken into account in [10–12] investigating vibrations of rectangular
plates and in [16] investigating the phenomenon of buckling. Particu-
larly, there is a lack of studies investigating the effect of the coupling of
the membrane and bending states described by the submatrix B, on the
behaviour of compound thin-wall structural elements during the post-
buckling state. When investigating compressed plates made of gradient
material when the non-trivial coupling submatrix B [17] occurs, the
post-buckling equilibrium pathways are asymmetrical.

Works [18–20] dealt with the influence of coupling submatrix B on
the load-carrying capacity of uniformly compressed thin-walled FML-
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FGM columns with closed [19] and open [18] cross-sections. These
analyses use a multimodal approach to the description of the buckling
phenomenon. The analyzed cases were characterized by strong inter-
actions among different modes of buckling. In these works, stiffness
reduction coefficients were introduced for the beam model (i.e., 1D
model) in the case of FML-FGM structures. In [20] the influence of
selected elements of coupling stiffness summarises on the stability and
load-carrying capacity of FML-FGM of open cross-sections is presented.
Only cases where the lowest buckling stress corresponded to global
mode were analyzed. In this case, the interaction of the modes accel-
erates the phenomenon of destruction, because the value of the load-
carrying capacity does not exceed the lowest buckling loads. Global
buckling mode always leads to a destruction of the structure. Attention
was paid to the necessity of further analysis of cases when the lowest
buckling loads correspond to local mode, because it is possible that the
load-carrying capacity exceeds the lowest buckling load value.

In this paper, the authors consider the influence of selected elements
of coupling matrix B and the buckling interaction phenomenon on the
load-currying capacity of composite structures for which the global
buckling loads are higher than local ones. For comparison, some ex-
amples were also analyzed when there is a reverse relationship between
global and local buckling loads.

2. Analytical background

The non-linear problem of stability has been solved using Koiter’s
theory. It is an asymptotic perturbation method [21–22]. A multi-mode
buckling approach was applied to determine a load-carrying capacity
[23–24]. The differential equilibrium equations of the thin-walled la-
minated structures were obtained with a variational method. Details
can be find in paper [25]. The full Green’s strain tensor are assumed:
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where: u, v, w-displacements parallel to the respective axes x, y, z of the
local Cartesian system of co-ordinates, where the plane xy coincides
with the middle surface of the plate before buckling.

The laminate’s constitutive equations have the following form
[4–5]:
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where: the sections forces N, the moments M and the in-plane and out-
plane deformations (i.e., ε and κ, respectively) and the submatrix A
describes the composite’s behaviour in its plane expresses the mem-
brane stiffness, the submatrix D represents the bending stiffness and the
submatrix B is referred to as a coupling stiffness submatrix. The clas-
sical laminate plate theory (CLPT) is employed [4–5].

The second Piola-Kirchhoff’s stress tensor and the transition matrix

using Godunov’s orthogonalization have been applied to solve the
problem. The equilibrium equations of the thin-walled laminated
structures are as follows [23–25]:
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where: σr – buckling stress instead of the r-th buckling mode, ζr – di-
mensionless amplitude of the r-th buckling mode, ∗ζr – dimensionless
amplitude of the initial imperfections corresponding to the r-th buck-
ling mode, σ – compressive stress, apqr and brrrr – constant coefficients,
respectively. The range of indices: p, q, r is from 1 to J, where J is the
number of interacting modes. The summation is supposed on the re-
peated indices. The apqr and brrrr coefficients in Eq. (6) are given for
example in [23–25].

The load-carrying capacity (denoted as, σs) corresponding to the
maximum value of the compressive stress σ for the imperfect structure
than the Jacobian of the Eq. (6) is equal to zero. In the cases of a thin-
walled structures with opened cross-sections an effect of the interaction
between global and local buckling modes has to be taken into account.
The buckling modes have to be selected to attain the lowest value of the
load-carrying capacity. In the present paper, a four-mode buckling
approach is applied. The flexural (S) and the flexural-torsional (A)
global modes, the symmetric local (S) and the antisymmetric (A) local
one are taken into consideration as in [18–19]. The symmetry condi-
tions (i.e., S) of the buckling mode corresponds to flexural or distor-
tional-flexural buckling, whereas the antisymmetry conditions (i.e., A)
entail flexural-torsional or distortional-flexural-torsional buckling. The
coupling buckling phenomenon takes place when for the analysis an
arbitrary number of symmetrical modes and/or even number of anti-
symmetric modes will be assumed [25–26]. The employed solution
method accounts also complex modes as global-distortional or distor-
tional-local (for more detailed analysis see [18–19]). In the analysis a
general layer sequence of considered composite columns was taken into
account. Due to the presence of the submatrix B, the extensional force
results not only in extensional deformations, but also in bending of the
structures. The mechanical coupling affects strongly a buckling re-
sponse, so the solution procedures become difficult.

The presented work includes two types of couplings, i.e. the influ-
ence of the individual components of the coupling stiffness submatrix B
and interactive (i.e., coupled) buckling on load-carrying capacity. The
main purpose of the work is to analyze how particular elements of
coupling submatrix affect the buckling and load-carrying capacity of
thin-walled columns for various modes of global and local buckling and
their interaction.

3. Analysis of the results

For computations thin-walled prismatic columns were assumed,
simply supported at both ends. All multilayered walls of the structure
are flat. Each layer of laminate obeys the Hooke’s law. The columns
with a top hat cross-section (Fig. 1a) and a lip channel cross-section
(Fig. 1b) were considered. Dimensions of the cross-sections were:

=b 150 mm1 ; =b 50 mm2 ; =b 25 mm3 and the thickness t=1.68mm.
Each column was made of a 12-layer composite. Each layer of the
thickness tlay=0.14mm is characterized by the following mechanical
properties [3]: Young’s elastic moduli in 1, 2 material directions –
E1= 161.2 GPa and E2= 11.38 GPa, shear modulus in the 1–2 plane
G12= 5.17 GPa, Poisson’s ratio ν12= 0.38.

For the analysis it was assumed the following laminate configura-
tion [θ/−θ2/θ/0/θ/−θ/905]T, where θ is an angle of fiber reinforce-
ment direction for particular layer measured to the compression load
direction. The positive sign of angle θ corresponds to trigonometric
direction [4]. For this general type of configuration some components
of submatrix A become equal to zero = = = =A A A A 016 61 26 62
whereas all elements of submatrix B and D are different from zero (Eq.
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