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A B S T R A C T

This paper presents the application of the three-dimensional spectral-Tchebychev technique to accurately predict
the vibration behavior of bi-directional functionally graded material curved parallelepipeds including geome-
tries such as beams, thin/thick plates, and solids. In this study, the material distribution within the domain of the
structure is obtained using bi-directional Mori-Tanaka method. To derive the boundary value problem governing
the dynamics of functionally graded curved parallelepipeds, three-dimensional elasticity equations are used
together with extended Hamilton’s principle. Numerical solution of the integral boundary value problem is
performed using the three-dimensional spectral Tchebychev approach. To validate and assess the performance of
the presented solution approach, a number of case studies are conducted. In each case study, the non-dimen-
sional natural frequencies and mode shapes are calculated and compared to those found using a finite element
solution approach. Furthermore, computational time of the simulation is measured in each case. It is shown that
the presented solution technique enables accurate prediction of vibration behavior of bi-directional functionally
graded curved parallelepipeds as precise as a finite elements method, but for a fraction of the computational cost.

1. Introduction

Vibration behavior of functionally graded materials (FGM) is critical
for a broad range of applications in diverse industries such as aero-
space, automotive, and ship-building. Since its discovery in the late
twentieth century, this concept has attracted increasing attention due to
its flexibility to achieve desired material properties (such as to obtain
high specific strength and high specific rigidity) and its wide range of
applications [1–3].

FGMs are heterogeneous composite materials obtained by varying
the volume composition of its constituents along selected/predefined
axes [4,5]. The volume composition is generally described by a simple
power law or an exponential relationship. Thus, the tailored material
properties are defined as continuous functions that depend on spatial
coordinates [2,6]. Compared to laminated composites where two or
more materials having dissimilar material properties are bonded to-
gether, the delamination and crack initiation problems due to the
sudden change of material properties (leading to undesired stress dis-
continuity) can be easily eliminated [2,7]. This unique characteristic of
FGMs makes it one of the most promising structural materials for future
novel applications in diverse fields of engineering. Therefore, it is
crucial to develop a high-fidelity model that can both accurately/pre-
cisely and efficiently (in terms of computational cost) capture the dy-
namics of these structures as also stated in a recent review article by

Swaminathan et al. [5].
In the past two decades, a large body of literature has been devoted

to the modeling dynamics (vibrational behavior) of FGM structures.
These studies can be mainly categorized into two groups as analytical
and numerical methods. Most of the analytical studies focus on simple
geometries and boundary conditions such as beam (one-dimensional –
1D) [8,9] and rectangular or circular plate (two-dimensional – 2D)
models where the material properties (Young’s Modulus and density)
vary generally unidirectionally since it is not possible to obtain a closed
form analytical solution for more complex geometries [10,5]. Further-
more, when the material is graded along more than one direction, it is
highly difficult to obtain an analytical solution due to the complexity of
the problem [7].

To enable the solution of more complex geometries and boundary
conditions, numerical methods have been employed. For instance,
beams with non-uniform cross-sections [11], bi-directional FGM beams
with various (and complex) boundary conditions [12,13] can be solved.
Although these beam theories yield accurate results for simple specific
geometries, as the geometry becomes complex (i.e., as the aspect ratio
of the beams decreases or as the vibration behavior of the structure
exhibits coupled motions due to the coupling between the motions such
as bending-axial (in-plane) motion or bending-twisting (out-of-plane)
motion arising from the geometry/cross-section of the structure), the
accuracy of these methods deteriorate. To overcome the limitations of
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the beam-based models, many researchers benefitted from plate/shell
models such as classical, Mindlin, or higher-order shear deformation
plate/shell theories using Galerkin [14,15] or Ritz [16,17] methods.

In particular, shell structures are commonly employed in wide range
of engineering applications due to their high-level stiffness behavior
enabling efficient load carrying capabilities; therefore, there is an ex-
ponentially grown interest in understanding the dynamic behavior (i.e.,
predicting the natural frequencies and mode shapes) of FGM shell
structures [3,18–20]. One of the main approaches used in the literature
is Generalized Differential Quadrature (GDQ) method, that is developed
by Shu [21], due to its simplicity and versatility. This method leads to a
generalized eigenvalue problem in which the points on the middle
surface of the shells are defined as the generalized displacements
[22–25]. To take into account the curvature effect, if necessary, a
curvilinear coordinate system is introduced and the derivative and in-
tegral operations are performed using this coordinate system
[3,16,26,27]. Furthermore, in a recent study of Tornabene et al. [28],
the vibrational behavior of arbitrarily shaped doubly-curved laminated
composite shell structures are presented where a mapping procedure
based on the use of Non-Uniform Rational B-Splines is performed and
the integral form of the partial differential equations is solved using
Generalized Integral Quadrature method. Note that in these technique,
the derivative and integral operations are performed numerically; thus,
the precision of the solution technique highly depends on the sampling
scheme and the selected basis functions [3,29].

Another common numerical approach to model the dynamics of the
FGM structures is to use finite element (FE) methods (both for 1D, 2D,
and three-dimensional −3D- problems) [30,31]. Although FE approach
enables accurate prediction of the dynamic behavior of FGMs, the
modeling procedure (finding a suitable mesh, defining the varying
material properties across the elements in the mesh, etc.) is arduous and
more importantly imposes a significant computational burden to obtain
a converged solution. However, there is a huge demand for 3D analysis
of FGM structures that can accurately capture the dynamics of these
structure and reduce the computational burden simultaneously [5].

Alternatively, to increase the computational efficiency, series-based
solution approaches such as Rayleigh–Ritz [32] or Galerkin’s [33]
methods are employed. Furthermore, the computationally efficient
nature of the series based approaches are combined with the generality
of the finite elements approach using methods such as spectral element
method (SEM) and quadrature element method (QEM) [34,35]. Al-
though these techniques are computationally efficient, their drawbacks
are (i) the difficulty in selecting proper basis/trial functions that needs
to be determined for each different geometry and boundary conditions,
(ii) the necessity to use special numerical algorithms.

Recently, a novel series based approach has been developed by the
author to predict the (coupled) 3D dynamics of complex engineering
structures including stationary and rotating parallelepipeds, pretwisted
and curved structures having isotropic material properties [29,36–38].
This technique uses 3D elasticity equations to derive the integral
boundary value problem (IBVP) through the extended Hamilton’s
principle. Compared to the techniques in the literature, it has many
advantages. First of all, IBVP approach incorporates the natural
boundary conditions directly to the problem and simplifies the for-
mulation. Thus, derivation of the partial differential form of the BVP is
eliminated. Furthermore, the projection matrices approach is used to
impose the essential boundary conditions on the IBVP; thereby applying
different basis/trial functions for each different structure and boundary
conditions is eliminated. Finally, the IBVP is discretized using Tche-
bychev polynomials (that has exponential convergence [39,40]) and
the system matrices are calculated through the exact evaluation of
differentiation and inner-product operations using the Tchebychev
matrix operators and Galerkin’s method [41]. Therefore, compared to
the collocation methods [42,43] where Tchebychev polynomials or any
other computationally efficient polynomials are used, the presented
approach in this study necessitates that the integrals of the equations

vanish with respect to all polynomials of a certain degree instead of
only at sampling points [29].

This paper presents the application of the 3D spectral Tchebychev
(3D-ST) technique for solving the 3D (coupled) dynamics of bi-direc-
tional FGM curved parallelepipeds under various different boundary
conditions. The integral boundary value problem (IBVP) is derived
using the extended Hamilton’s principle where the strain energy of the
FGM structure is obtained using 3D elasticity equations. To facilitate
the spatially varying material properties along one or more directions,
the Mori-Tanaka scheme is utilized. Then, if necessary, a coordinate
transformation is defined to map the curved geometry into a simple
parallelepiped geometry to simplify the domain of the problem.
Following the simplification of the domain of the problem, the spectral-
Tchebychev approach is benefitted to discretize the derived IBVP. To
validate the accuracy/precision of the presented approach and de-
monstrate its capabilities and computational performance, a number of
case studies (including straight and curved parallelepipeds having
uniform, uni-axially or bi-axially varying material properties) are in-
vestigated. The results obtained through the presented solution ap-
proach and the duration (CPU –central processing unit– time) of the
simulations are compared to those found from a commercial finite
elements (FE) software.

2. Derivation of the model

The generic geometry of a curved parallelepiped is depicted in
Fig. 1. Here, instead of the global (x y z) cartesian coordinate frame, a
curvilinear coordinate frame (x y z coordinate frame) placed at the
geometric center of the parallelepiped, is used to describe the geometry:
Lx and Ly are the lengths of the parallelepiped along x and y axes, and
h is the height (or thickness) of the parallelepiped. R denotes the radius
of curvature.

Fig. 1. Generic description of the geometry of a curved parallelepiped.
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