Wave propagation characteristics in a piezoelectric coupled laminated composite cylindrical shell by considering transverse shear effects and rotary inertia

Hossein Kh. Bisheh, Nan Wu

Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg R3T 2N2 Canada

ARTICLE INFO

Keywords:
Wave characteristics
Dispersion solution
Laminated composite shell
Piezoelectric
Shear effect and rotary inertia

ABSTRACT

Wave behavior is investigated in a piezoelectric coupled laminated fiber-reinforced composite cylindrical shell by considering the transverse shear effects and rotary inertia. A mathematical model is presented for analysis of wave propagation in a laminated fiber-reinforced composite cylindrical shell coated with the piezoelectric layer. By solving an eigenvalue problem, dispersion characteristics for different wave modes are obtained. Piezoelectric effect on dispersion curve is investigated. The effects of material properties of host substrate shell, laminate stacking sequence, and fiber orientation on dispersion curve are examined as well. In addition, a comparison of dispersion solutions from different shell theories with different axial and circumferential wave numbers and piezoelectric layer thickness is provided to illustrate the transverse shear and rotary inertia effects on wave behavior of a laminated fiber-reinforced composite shell. The results of this paper can be used for studies on wave propagation in piezoelectric coupled laminated composite shell structures and design of smart composite shell structures with the piezoelectric material for health monitoring and dynamic stability evaluation.

1. Introduction

Composite shell structures are widely used in aerospace, civil, marine, offshore, and other engineering industries, due to their high stiffness and strength to weight ratios compared to traditional materials. Composite materials consist of two or more constituents, whose mechanical properties and performance are superior to those of the constituent materials acting independently. One of the constituents is usually discontinuous, stiffer, and stronger and is called the reinforcement fiber, while the less stiff, weaker, and lightweight constituent is continuous and is called the matrix [1]. A composite laminate may be made up of unidirectional fiber-reinforced Carbon/Epoxy and E-glass/Epoxy layers stacked together in a specified sequence. The composite structure, then is lightweight, stiff, and in many aspects with excellent mechanical performances and properties. However, such structures may be low resistant to dynamic loading and working conditions. Understanding dynamic behavior and wave propagation in laminated composite shell structures has great importance due to high rate of frequency and dynamic strain subjected to these structures. To characterize the dynamic behavior of shell structures, dispersion solution and frequency determination have great importance. By wave propagation analysis in composite shell structures, existence of any fault, such as crack and delamination, can be detected. Therefore, understanding wave propagation in laminated fiber-reinforced composite shell structures coupled with the piezoelectric layer is very important in design of laminated composite cylindrical shell structures and smart materials required for the stability analysis and structural health monitoring.

Different shell theories were developed in past decades, which can help to model and understand dynamics of composite shell structures. The lowest-order shell theory, i.e. membrane shell theory, was developed by Love [2], in which transverse or out-of-plane shear forces (V_{xz} and V_{yz}), bending and twisting moments (M_{xx}, M_{yy}, and M_{zz}) are assumed negligible. Such model is usable and efficient to study thin shell structures in which only the in-plane normal and shear forces (N_{xx}, N_{yy}, and N_{xy}) applying in the mid-surface of shell are considered. This lower-order shell model presents the essential features of the shell and is used as a fundamental model for higher-order shell theories. Some notable works based on this simply model were presented by Donnel [3], Flugger [4], Vlasov [5], and Sanders [6].

The classical shell theory, proposed by Love [2] and Reissner [7] as the first approximation to thin shell theory, is based on the following assumption: (a) the laminate is thin compared to its lateral dimension; (b) the deflection of shell is small; (c) straight lines normal to the
middle surface remain straight and normal to that surface after deformation; and (d) the transverse shear stresses \(\tau_{\theta z}, \tau_{z\theta} \) are zero. Usually, the model developed based on the above assumptions is referred as the Love’s bending shell theory or the classical (lower-order) shell theory. Many studies were performed on shell structures based on the Membrane and Love’s bending shell theories. However, the above assumptions are not valid for thicker shells and shells with low stiffness central plies undergoing significant transverse shear deformation. Miskvy and Hermann [8] considered the shear effects in both axial and circumferential directions and the rotary inertia effects for cylindrical shells with moderate thickness. Lin and Morgan [9] developed equations for axially symmetric motions considering shear effects and rotary inertia. Cooper and Naghdi [10] developed a theory including both transverse shear effects and rotary inertia for non-axi-axial symmetric motion of shell structures. Greenspan [11] showed that the Cooper-Naghdi shell theory [10], considering both transverse shear effect and rotary inertia, is sufficient for wave propagation analysis in thicker cylindrical shells. The Cooper-Naghdi shell theory is also known as the first-order shear deformation shell theory. Based on the Cooper-Naghdi shell theory, the assumption of normality of straight lines is removed, that is, straight lines normal to the middle surface remain straight but not normal to that surface after deformation.

Last decades, the applications of smart materials and structures such as piezoelectric coupled beam, plate, and shell have been studied widely. Piezoelectric actuators are widely used in sensing and damage detection of various structures such as beams, plates and shells due to their actuating properties and unique sensing. Interdigital transducer (IDT) is used to apply wave propagation in piezoelectric structures for structural health monitoring. To this purpose, a piezoelectric layer is considered in their study and transverse shears stresses and the rotary inertia via the Cooper-Naghdi shell theory. The main objective of this study is to fill this void by solving this wave propagation problem by including the transverse shear effects and rotary inertia, i.e. the Cooper-Naghdi shell theory [10].

In this paper, we investigate wave propagation in a piezoelectric coupled laminated fiber-reinforced composite cylindrical shell using the Cooper-Naghdi shell theory in which the transverse shear effects and rotary inertia are included. A complete mathematical model of wave propagation solution in a piezoelectric coupled laminated fiber-reinforced composite cylindrical shell is provided. By solving an eigenvalue problem, the phase velocity and dispersion curve for different axial wave numbers and wave modes will also be provided. The validity of this solution method and numerical results are proved with the results of the Ref. [18] by considering aluminium as core material of the piezoelectric coupled shell. Furthermore, the effects of circumferential wave number, piezoelectric layer thickness, laminate stacking sequence, core materials, and fiber orientation on dispersion solutions are examined. A comparison of dispersion solutions by different shell theories is provided as well. The results of this study can lead to a better understanding of dynamics of the piezoelectric coupled laminated composite shell structures.

2. Methodology and modeling

Configuration of a laminated fiber-reinforced composite cylinder and an infinitely long laminated fiber-reinforced composite cylindrical shell coated with a piezoelectric layer are shown in Fig. 1a and b. Coordinate \(x \) represents the direction along the shell axial direction, \(\theta \) for the circumferential direction, and \(z \) for the radial direction (Fig. 1b). The \(x-\theta \) plane is equidistant from the top and bottom surfaces of the laminate and is called the reference plane or mid-plane. The stress and moment resultants at an infinitesimal element for a shell structure is shown in Fig. 1c. The general strain-displacement relations in the cylindrical coordinate system \((x, \theta, z) \) are given by,

\[
\begin{align*}
\varepsilon_{xx} &= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial \theta} + \frac{w}{R}, \\
\varepsilon_{\theta\theta} &= \frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z}, \\
\varepsilon_{zz} &= \frac{\partial w}{\partial z}, \\
\gamma_{x\theta} &= \frac{1}{2} \left(\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial z} \right), \\
\gamma_{\theta z} &= \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial \theta} \right), \\
\gamma_{z\theta} &= \frac{1}{2} \left(\frac{\partial w}{\partial \theta} + \frac{\partial u}{\partial z} \right).
\end{align*}
\]

where \(u, v, \) and \(w \) are the displacements of a generic point of cylinder \(x, \theta, \) and \(z \) directions, respectively, and \(R \) is the reference plane radius.

2.1 Constitutive equations for a laminated composite cylindrical shell by the Cooper-Naghdi shell theory

Cooper and Naghdi [10] proposed a shell theory, i.e. the Cooper-Naghdi shell theory, in which the transverse shear and rotary inertia had been included for modeling of shell structures. Constitutive equations based on the Cooper-Naghdi shell theory for a laminated composite cylindrical shell are derived in this section. Fig. 2 shows a section of a laminated composite shell normal to the \(\theta \)-axis before and after deformation, including the effects of transverse shear, where straight lines normal to the middle surface remain straight but not normal to that surface after deformation. The result of this deformation is the rotation of the cross-section \(ABCD \) by angle \(\alpha_z \) to a location \(AB'C'D' \), which is normal to the deformed middle surface [1,30]. The displacements of a generic point \(B \) based on the Cooper-Naghdi shell theory are expressed as [30],

\[
\begin{align*}
&u(x, \theta, z, t) = u_0(x, \theta, t) + z\alpha_z(x, \theta), \\
v(x, \theta, z, t) = v_0(x, \theta, t) + z\alpha_v(x, \theta), \\
w(x, \theta, z, t) = w_0(x, \theta, t).
\end{align*}
\]