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A B S T R A C T

This paper presents the free vibration behavior of two directional functionally graded beams subjected to various
sets of boundary conditions which are simply supported (SS), clamped-simply supported (CS), clamped-clamped
(CC) and clamped-free (CF) by employing a third order shear deformation theory. The material properties of the
beam vary exponentially in both directions. In order to investigate the free vibration response, the equations of
motion are derived by means of Lagrange equations. The axial, transverse deflections and rotation of the cross
sections are expressed in polynomial forms including auxiliary functions which are used to satisfy the boundary
conditions. The verification and convergence studies are performed by using computed results from a previous
study which is based on the Timoshenko beam formulation. The results for extensive studies are provided to
understand the influences of the different gradient indexes, various aspect ratios and boundary conditions on the
free vibration responses of the two directional functionally graded beams.

1. Introduction

Functionally Graded Materials (FGMs) are a class of composites that
have received great attention in many modern engineering applications
such as military, aerospace, nuclear energy, biomedical, automotive,
civil engineering and marine. Due to its lower transverse shear stresses,
high resistance to temperature shocks and no interface problems
through the layer interfaces, the researchers have extensively examined
the static, vibration and buckling responses of these structures during
the last decade [1–24]. However, the conventional FGMs (or 1D-FGM)
with material properties which vary in one direction are not efficient to
satisfy the technical requirements such as the temperature and stress
distributions in different directions for aerospace craft and shuttles
[25].

The mentioned deficiency of the conventional FGM can be elimi-
nated by using a new type FGM with material properties varying in
desired directions. The mechanical and thermal behaviors of two-di-
rectional FG structures have been investigated so far. The Element Free
Galerkin Method is employed to optimize the natural frequencies of 2D
two-directional functionally graded beams (FGBs) in [26]. The static
and thermal deformations of bi-directional FGBS are investigated by
employing the state-space based differential quadrature method obtain
the semi-analytical elasticity solutions [27]. A symplectic elasticity
solution for static and free vibration analyses of 2D-FGBs with the
material properties varying exponentially in [28]. The fully coupled

thermo-mechanical behavior of 2D-FGBs is studied using an isogeo-
metric finite element model in [29]. Free and forced vibration of Ti-
moshenko 2D-FGBS under the action of a moving load is investigated in
[30]. The buckling of Timoshenko beams composed of 2D-FGM is stu-
died in [31]. The static behavior of the 2D-FGBs by using various beam
theories is presented in [32]. An analytical solution for the static de-
formations of the bi-directional functionally graded thick circular
beams is developed based on a new shear deformation theory with a
logarithmic function in the postulated expression for the circumfer-
ential displacement in [33]. The flexure behavior of the two directional
FG sandwich beams by using a quasi-3D theory and the SSPH (Sym-
metric Smoothed Particle Hydrodynamics) method is studied in [34].

As it is seen from above discussions, most of the studies are related
to the static, dynamic and buckling analysis of conventional function-
ally graded (1D-FG) beams. The studies related to two directional FGBs
are still limited. As far as author aware, there is no reported work on the
free vibration analysis of the two directional FBGs based on a third
order shear deformation theory. Main differences of this paper from the
related paper [30] are: the present theory does not require a shear
correction factor which depends on the material and geometrical
properties as well as boundary conditions [35] of the 2D-FGBs and
satisfies the zero traction boundary condition of the top and bottom
surfaces of the beam, the second and third natural frequencies of the
2D-FGBs for various end conditions, aspect ratios and gradient indexes
are presented within this paper and it is clear that the accuracy of the
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Timoshenko beam theory decreases as the mode number increases [7].
As a result, a third order shear deformation theory is necessary to have
a better prediction of vibration responses of the two directional FGBs.
The main novelty of this paper is that the free vibration behavior of the
two directional FGBs is analyzed based on a third order shear de-
formation theory by using the Lagrange equations with four different
end conditions for the first time.

2. Theory and formulation

2.1. Homogenization of material properties

A two-directional functionally graded beam of length L, width b and
thickness h is shown in Fig. 1. The material properties of the beam vary
exponentially not only in the z-direction (thickness direction) but also
in the x-direction (along the length of the beam). The Young’s modulus
E, shear modulus G, Poissons’s ratio ν and mass density ρ vary ac-
cording to the following expressions [30]
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where E ν,m m and ρm are the material properties of the reference material
value at the point (−L/2, −h/2), px and pz are the gradient indexes
which determine the material properties through the thickness (h) and
length of the beam (L), respectively. When the px and pz are set to zero
then the beam becomes homogeneous.

2.2. Kinetic, strain and stress relations

The following displacement field is given for the third order shear
deformation theory (Reddy Beam Theory (RBT))
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Here u and w are the axial and transverse displacements of any
point on the neutral axis ϕ, is the rotation of the cross sections,

=α h4/(3 )2 . By using the Eq. (2), the strain-displacement relations of
the RBT are given by
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Fig. 1. Geometry and coordinate of a two-directional FGB.

Table 1
Kinematic boundary conditions used for the numerical computations.

BC = −x L/2 =x L/2
S-S = =u w0, 0 =w 0
C-S = = =u w ϕ0, 0, 0, ′ =w 0 =w 0
C-C = = =u w ϕ0, 0, 0, ′ =w 0 = = =u w ϕ0, 0, 0, ′ =w 0
C-F = = =u w ϕ0, 0, 0, ′ =w 0

Table 2
Boundary exponents for various boundary conditions.

BC Left end Right end

pu pw pϕ qu qw qϕ

SS 1 1 0 0 1 0
CS 1 2 1 0 1 0
CC 1 2 1 1 2 1
CF 1 2 1 0 0 0

Table 3
Verification and convergence studies, dimensionless fundamental frequencies λ( )1 of SS two directional FGBs with respect to gradient index and aspect ratio change.

Beam theory px L/h= 5
pz

L/h= 20
pz

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Timoshenko [30] 0 2.6767 2.6748 2.6669 2.6533 2.6337 2.6103 2.8369 2.8349 2.8251 2.8115 2.7919 2.7685
RBT 2 terms 2.9433 2.9402 2.9310 2.9157 2.8947 2.8682 3.1468 3.1436 3.1342 3.1187 3.0972 3.0700

4 terms 2.6780 2.6753 2.6672 2.6539 2.6354 2.6121 2.8380 2.8351 2.8267 2.8127 2.7933 2.7689
6 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
8 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
10 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681
12 terms 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681

Timoshenko [30] 0.4 2.6728 2.6689 2.6611 2.6474 2.6279 2.6044 2.8330 2.8291 2.8212 2.8076 2.7880 2.7626
RBT 2 terms 2.9448 2.9417 2.9325 2.9172 2.8961 2.8695 3.1525 3.1493 3.1399 3.1243 3.1027 3.0755

4 terms 2.6740 2.6740 2.6713 2.6632 2.6497 2.6312 2.8350 2.8322 2.8237 2.8097 2.7904 2.7660
6 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
8 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
10 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636
12 terms 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636

Timoshenko [30] 1 2.6455 2.6416 2.6337 2.6201 2.6005 2.5771 2.8095 2.8056 2.7978 2.7841 2.7646 2.7412
RBT 2 terms 2.9522 2.9491 2.9398 2.9245 2.9033 2.8766 3.1820 3.1788 3.1693 3.1536 3.1318 3.1044

4 terms 2.6527 2.6500 2.6418 2.6283 2.6096 2.5860 2.8193 2.8165 2.8080 2.7941 2.7749 2.7505
6 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
8 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
10 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
12 terms 2.6452 2.6425 2.6343 2.6208 2.6022 2.5788 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405
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