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a b s t r a c t 

We analyze turbulent flows of shear-thinning yield stress fluids in both pipe and channel geometries. We 

lay down a consistent procedure for hydraulic calculation of Herschel-Bulkley fluids; i.e. finding the rela- 

tionship between the mean velocity and the wall shear stress. We show that for weakly turbulent flows 

it is necessary to include an analysis of wall layers in studying dispersion. In pipe flows, we observe an 

O(10) increase in Taylor dispersion coefficients, compared to highly turbulent values. This arises from a 

combination of large velocity and small turbulent dispersivity, acting over a wall layer that can represent 

� 20% of the pipe area. In channel flows the wall layer effect is more modest, but still represents an O(1) 

increase in Taylor dispersion coefficient. The preceding effects are negated for small power law index, due 

to rapid reduction of the wall layer, and are observed to reduce modestly as the yield stress increases. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

The aim of this paper is to explore the effects of the yield stress 

on dispersion of mass in weakly turbulent duct flows. The motiva- 

tion comes from studying the dispersive flows that are found in 

the primary cementing of oil and gas wells. During primary ce- 

menting a sequence of different fluids are successively pumped 

into the well, travelling downwards within the casing (pipe) and 

returning upwards along the outside of the casing (narrow ec- 

centric annulus); see [42] . The initial stages of wells are vertical. 

Within the past 10–20 years the industrial trend has been towards 

wells that are longer and frequently drilled horizontally. Extended 

reach drilling leads to larger frictional pressure drops and horizon- 

tal wells mean that frictional pressure is more important in rela- 

tion to violating pore-frac pressure bounds. Together, these have 

meant that modern wells are less frequently cemented in highly 

turbulent flow regimes. Laminar, transitional and weakly turbulent 

flow regimes are more usual. 

The fluids used in primary cementing are drilling fluids, 

washes, spacer fluids and cement slurries, all of which are char- 

acterised within the industry as shear-thinning yield stress fluids, 

e.g. Herschel-Bulkley fluids. If water-based, these fluids are mis- 

cible. In turbulent flows they rapidly mix transversely and then 
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disperse longitudinally, presumably driven by the Taylor dispersion 

mechanism, [58,59] . Although Zhang and Frigaard [69] have con- 

sidered dispersion of such fluids in laminar regimes, for laminar 

flows primary cementing does not typically fall into the Taylor- 

regime. 

Axial dispersion in turbulent flows of Newtonian fluids was ini- 

tially studied by Taylor [59] . Upon applying the Reynolds analogy 

to model the turbulent dispersivity, he then integrated the relative 

velocity profile across the pipe to calculate the axial bulk disper- 

sivity. Taylor used tabulated data from the universal distribution of 

velocity which is known to be valid only at high Reynolds num- 

ber and therefore his results significantly deviate from experimen- 

tal data [12,33,61] . Taylor’s analysis was later revisited by Tichacek 

et al. [61] and Flint and Eisenklam [16] who utilized experimental 

velocity profiles to give better estimates. Nonetheless, both these 

studies deviate from experimental results at low Reynolds num- 

ber ( Re < 10 4 ) mainly because the experimental velocity profile 

was unable to capture the wall layer. In another study Ekambara 

and Joshi [12] estimated the axial dispersion with a velocity pro- 

file obtained computationally using the k − ε model. A comparison 

of these approaches with the experimental data can be found in 

Hart et al. [33] . 

Alternative approaches to that of Taylor can be found in the lit- 

erature. For example, Aris [3] developed a concentration moment 

equation which described the distribution of solute. Chikwendu 

[6] divided the flow into N well mixed zones of parallel flows and 

found the dispersion of each zone separately, then solving the N 

coupled dispersion equations to give an estimate of the dispersion 

coefficient. Hart et al. [33] compared the results of this method 
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with their experimental data and the results of Taylor. Dispersion 

in unsteady problems has been studied by Gill and Sankarasubra- 

manian [21] , Sankarasubramanian and Gill [53] , Vedel and Bruus 

[63] and others. Other Taylor dispersion studies have focused on 

natural flows, e.g. Fischer [15] , Day [7] . 

For inelastic non-Newtonian fluids, axial dispersion in lami- 

nar [1,2,5,69] and turbulent [39,57,64] flows has been studied. In 

the case of turbulent regimes, Krantz and Wasan [39] , Wasan and 

Dayan [64] studied dispersion of power-law fluids using the turbu- 

lent velocity profile of Bogue and Metzner [4] . Wasan and Dayan 

[64] predicted the axial dispersion to increase with Reynolds num- 

ber, contradicting Taylor’s model for dispersion. Krantz and Wasan 

[39] modified the earlier results by adding a wall layer to the ve- 

locity profile. However, the validity of their results is questionable 

since the velocity scale used appears to be different from that of 

Bogue and Metzner [4] . 

As noted by Ekambara and Joshi [12] , Hart et al. [33] , Krantz 

and Wasan [39] , Tichacek et al. [61] , good estimation of the Tay- 

lor dispersion demands an accurate velocity profile. Laminar ve- 

locity profile are integrable from the constitutive law, and the 

Metzner-Reed generalised Reynolds number provides an econom- 

ical description of the hydraulic closure relationship. Hydraulic- 

style calculations for turbulent shear-thinning and yield stress flu- 

ids have studied since the 1950’s; see e.g. [26–28,31,32,52] . Al- 

though not universally accepted, the phenomenological method of 

Dodge-Metzner-Reed [9,40] is popular in many process industries. 

In this method a generalised Reynolds number is defined based on 

the local power-law parameters. Then, a closure relationship is es- 

tablished for the frictional pressure drop as a function of the gen- 

eralised Reynolds number, calibrated with the available data. The 

Dodge-Metzner-Reed approach was intended to apply to all gener- 

alised Newtonian fluids. The extension to yield stress fluids can be 

found in [17,46,48] , as well as internally within technical literature 

of many petroleum companies. Tests against experimental data are 

described by [23] . More recently, comparisons with direct numeri- 

cal simulation data were made by [51] . 

In the context of dispersion the Dodge-Metzner-Reed approach 

is attractive in that the hydraulic calculations (and closure) are 

linked to a universal log-law velocity profile, proposed by Dodge 

and Metzner [9] . Such profiles may be used directly to calculate 

Taylor dispersion coefficients. However, two common deficiencies 

occur: (i) the log-law is not valid at the centreline of the pipe/duct; 

(ii) the log-law must be matched/patched to a different veloc- 

ity approximation close to the wall. Various centreline corrections 

have been suggested, including the correction of [49] and exponen- 

tial correction of [4] . Near the wall, Krantz and Wasan [38] argued 

that Reynolds stresses decay as the cube of the distance, and there- 

fore suggested that the wall layer effect could be significant. Krantz 

and Wasan [39] developed the analysis framework to evaluate the 

wall layer for power-law fluids. 

In this paper we consider dispersion of yield stress fluids. In 

laminar flows, increasing the yield stress tends to flatten the veloc- 

ity profile and hence reduce Taylor dispersion. In turbulent flows it 

is generally thought that the yield stress has little influence on the 

velocity profile in the turbulent core, but is known to retard tur- 

bulent transition. Equally, since the yield stress contributes to the 

effective viscosity we might expect that wall-layer effects are sig- 

nificant as the yield stress increases. Hence the interest in weak 

turbulence where wall-layers are thicker and occupy a larger pro- 

portion of the duct area, also where the velocity changes are great- 

est. Our study explores the subtlety of this relationship. 

An outline of our paper is as follows. In Section 2 we out- 

line the dimensionless numbers and hydraulic calculation for pipe 

flows of Herschel-Bulkley fluids. This leads in Section 3 to the tur- 

bulent velocity profile, corrected at the centreline and wall. Using 

Reynolds analogy we find the turbulent diffusivity and finally we 

give estimates for the Taylor dispersion coefficient. In Section 4 we 

outline analogous results and analysis for channel flows (modelling 

a section of the narrow annulus in cementing). The paper is closed 

with a discussion and conclusions in Section 5 . 

2. Pipe flow 

Consider fully developed steady flow of a Herschel-Bulkley fluid 

along a pipe. The axial momentum balance relates the axial gra- 

dient of frictional pressure ˆ p f to the wall shear stress ˆ τw 

, which 

is then described in terms of the inertial stress scale ˆ ρ ˆ W 

2 
0 
/ 2 and 

(Fanning) friction factor f f : 

−
ˆ D 

4 

∂ ̂  p f 

∂ ̂  z 
= ˆ τw 

= 

ˆ ρ ˆ W 

2 
0 

2 

f f , (1) 

where ˆ W 0 is the mean velocity and ˆ ρ is the fluid density. 2 

Herschel-Bulkley fluids are defined rheologically by three param- 

eters: the yield stress ˆ τY , the consistency ˆ κ, and the power law 

index n . In the hydraulic calculations that are generally performed, 

the fluid properties: ˆ ρ, ˆ τY , ˆ κ, n , and the pipe diameter ˆ D are 

known. The aim is to define the closure relationship between the 

wall shear-stress ˆ τw 

and the mean velocity ˆ W 0 for the different 

flow regimes. 

A widely used approach is that of Dodge and Metzner [9] in 

defining f f as a function of the generalised (Metzner-Reed) 

Reynolds number and power law index, with an additional di- 

mensionless parameter needed to quantify yield stress effects. Al- 

though we are concerned with turbulent flows, the Metzner-Reed 

approach requires the laminar flow relations. The Metzner-Reed 

generalized Reynolds number is defined: 

Re MR = 

8 ̂  ρ ˆ W 

2 
0 

ˆ κ ′ ( ̂  ˙ γN ) n 
′ (2) 

where the primed variables are: 

ˆ κ ′ = 

ˆ τw 

( ̂  ˙ γL ) n 
′ , n 

′ = 

d ln ̂  τw 

d ln 

ˆ ˙ γL 

. (3) 

The Newtonian strain rate at the wall is ˆ ˙ γN and 

ˆ ˙ γL is the laminar 

strain rate: 

ˆ ˙ γN = 

8 

ˆ W 0 

ˆ D 

, ˆ ˙ γL = 

8 

ˆ W L 

ˆ D 

. (4) 

The velocity ˆ W L , used to define ˆ ˙ γL , is the mean velocity that the 

fluid would have in a laminar flow, driven by the wall shear-stress 

ˆ τw 

. Note that ˆ W L and 

ˆ ˙ γL are defined by the wall shear stress ˆ τw 

across all flow regimes, but will only equal ˆ W 0 and 

ˆ ˙ γN in the case 

that the flow is laminar. 

For laminar flows, the Buckingham-Reiner equation can be de- 

rived, which is an algebraic equation relating the flow rate to the 

wall shear stress. The Rabinowitsch-Mooney procedure results in 

the same expression. For Herschel-Bulkley fluids the result is: 

ˆ ˙ γL = 

4 n 

3 n + 1 

(1 − r Y ) 
1 /n +1 

[
ˆ τw 

ˆ κ

]1 /n 

×
[
(1 − r Y ) 

2 + 

2(3 n + 1)(1 − r Y ) r Y 
2 n + 1 

+ 

(3 n + 1) r 2 Y 

n + 1 

]
. (5) 

Here r Y = ˆ τY / ̂  τw 

, which also represents the dimensionless radial 

position of the yield surface. Combining (3) with (5) we find: 

n ′ = n (1 − r Y ) 
(n + 1)(2 n + 1) + 2 n (n + 1) r Y +2 n 2 r 2 Y 

(n + 1)(2 n + 1) + 3 n (n + 1) r Y + 6 n 2 r 2 
Y 

+ 6 n 3 r 3 
Y 

, (6) 

2 In this paper we denote dimensional quantities with a ̂  · symbol and dimension- 

less quantities without. 
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