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a b s t r a c t 

This work presents a decoupling multiple-relaxation-time lattice Boltzmann flux solver (MRT-LBFS) for 

simulating non-Newtonian power-law fluid flows. The decoupling MRT-LBFS is a finite volume solver for 

the direct update of fluid variables at cell centers. Its fluxes at each cell interface are modeled physi- 

cally in a mesoscopic way through local reconstruction of the MRT-LBM solutions of density distribution 

functions (DDFs). In particular, inviscid and viscous fluxes are simultaneously obtained through lattice 

summations of equilibrium and non-equilibrium DDFs. Following the MRT model, non-equilibrium DDFs 

are evaluated in the moment space by using the relationships given from the Chapman–Enskog anal- 

ysis so that collisional invariant properties of conserved variables can be effectively incorporated into 

the flux reconstruction process. Unlike most existing LB models, in which the relaxation time depends 

on fluid viscosity, the present method completely decouples the mutual dependence of the relaxation 

time and viscosity so that the relaxation time can be selected freely. Several numerical examples of non- 

Newtonian power-law fluid flows, including plane Poiseuille flow in a channel, lid-driven cavity flows and 

polar-cavity flows in a sector, have been simulated for validation. The obtained results compare well with 

the benchmark data. It has been shown that the decoupling MRT-LBFS has second order of accuracy in 

space and can be effectively applied to simulate non-Newtonian flows on non-uniform grids. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Non-Newtonian fluid flows are frequently encountered in many 

physical and industrial processes [1] , such as porous flows of oils 

and gases [2] , biological fluid flows of blood [3] , saliva and mucus, 

penetration grouting of cement mortar and mixing of massive par- 

ticles and fluids in drug production [4] . As compared with Newto- 

nian fluid flows, the constitutive behavior of non-Newtonian fluid 

flows is usually more complex and highly non-linear, which may 

bring more difficulties in using numerical methods [5] to study 

such flows. For instance, due to the dependence of viscosity on 

shear rate, accurate and efficient numerical methods are required 

for evaluation of velocity gradients, which may be very large and 

have sharp changes in some circumstances. Nevertheless, to ef- 

fectively study non-Newtonian fluid flows, a number of macro- 

scopic and mesoscopic numerical methods have been proposed [6–

9] . Among them, the mesoscopic lattice Boltzmann method [9–
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14] , which has been proven to be a simple yet efficient solver for 

simulating a variety of complex fluid flows, is receiving more at- 

tention due to its distinguishing features. Several variants of LBM 

[9,13–21] have been proposed and improved to effectively con- 

sider the complexity of constitutive equations for non-Newtonian 

fluids. 

Based on the single-relaxation-time (SRT) model, the earliest 

LBM for simulation of non-Newtonian fluid flows was perhaps pro- 

posed by Aharonov and Rothmans [9] . Although the SRT model 

is simple for implementation, its numerical stability is largely af- 

fected by the value of the relaxation parameter τ [11] , which is 

coupled together with the viscosity μ of the considered fluid, that 

is, μ = ρc 2 s ( τ − 1 / 2 ) . In particular, as τ approaches 1/2 or becomes 

too large, numerical instability of the SRT model may occur. For 

non-Newtonian fluid flows, small viscosity can be common since it 

is a local parameter and passively determined by the shear rate in 

the flow field. As a consequence, numerical instability of the LBM 

can be very critical in simulating non-Newtonian fluid flows. To 

alleviate this defect, Gabbanelli et al . [15] proposed an improved 

LBM based on the work of Aharonov and Rothmans [9] by arti- 

ficially imposing lower and upper bounds to the fluid viscosity. 
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Their improved model has been successfully validated by simulat- 

ing channel flows and reentrant flows. However, the appropriate 

lower and upper bounds may be difficult to determine and limit its 

applications to flows in a narrow range of shear-dependent viscosi- 

ties. To remove this drawback, Boyd et al . [16] proposed a second- 

order lattice Boltzmann model by applying the non-equilibrium 

terms of DDFs to compute the shear rate. Yoshino et al. [17] also 

devised an improved model by introducing the shear stress into 

the equilibrium DDF so that the relaxation time in their model can 

be decoupled from fluid viscosity. Vikhansky [18] proposed a new 

model for yield-stress fluids, in which collisions are treated im- 

plicitly. Later, Wang et al. [19] argued that the LB model proposed 

by Yoshino et al. [17] does not satisfy mass conservation law and 

further proposed a mass-conserving model by incorporating shear 

stress into the equilibrium DDF. In their model, the shear rate is 

evaluated through non-equilibrium DDFs. However, due to the in- 

clusion of shear stress into the equilibrium DDF, the computation 

of the shear rate and the equilibrium DDF at each time step is im- 

plicitly coupled. As compared with SRT-LBM [15–19] , only a few 

MRT-LBMs [20,21] were proposed for simulating generalized non- 

Newtonian fluid flows. Numerical results showed that the MRT- 

LBM is able to maintain better numerical stability. 

It is also noticed that the coupling issue between the relax- 

ation parameter and fluid viscosity has not been fully resolved, 

and effective simulation of non-Newtonian fluid flows with curved 

boundaries by the LBM may be still challenging. In particular, to 

the best of our knowledge, there is few MRT lattice Boltzmann 

models that decouple the dependence of viscosity and relaxation 

time. In addition, the existing SRT and MRT lattice Boltzmann 

models are proposed based on the standard LBM and applied to 

flows with straight walls. Although they retain the distinguishing 

merits of LBM, the drawbacks of the standard LBM are also kept, 

such as limitation on uniform grids, tie-up between time step and 

grid spacing and requirement of substantial virtual memory [22] . 

These drawbacks can be effectively removed by the recently pro- 

posed lattice Boltzmann flux solver (LBFS) [23–25] , which is a fi- 

nite volume solver based on the standard LBM for direct update of 

conservative variables at cell centers. LBFS reconstructs its fluxes 

at cell interfaces locally in a mesoscopic way through lattice Boltz- 

mann solutions. Existing LBFSs [22–25] are based on the SRT lattice 

Boltzmann model for simulating different Newtonian fluid flows, 

such as isothermal flows, thermal flows and multi-phase flows. 

In this work, a decoupling LBFS is proposed based on the 

MRT lattice Boltzmann model for effective simulation of non- 

Newtonian power-law fluid flows. Unlike existing decoupling SRT 

models, which introduce the constitutive equation for shear stress 

into the equilibrium DDFs, the present method is based on the 

original MRT-LBM but effectively decouples the relaxation time 

and viscosity. To achieve this goal, a Chapman–Enskog analysis of 

the MRT-LBM is carried out to derive the relationships between 

the macroscopic fluxes and mesoscopic DDFs. When the derived 

relationships are applied directly to reconstruct the macroscopic 

fluxes, the coupling issue remains unresolved. Alternatively, ac- 

cording to the gas kinetic theory, the shear rate is directly re- 

lated to non-equilibrium terms of the non-conserved variables 

in moment spaces for the MRT-LB model, whose relationships 

have been verified and applied in many LBM applications [20] . 

It may be noted that these relationships can also be applied di- 

rectly to approximate the fluid viscosity and viscous fluxes in 

the LBFS. The evaluation of these non-equilibrium terms is car- 

ried out in the moment space by applying the formula given 

from the Chapman–Enskog analysis and collisional invariant fea- 

tures. The proposed method will be validated through several 

flow problems of non-Newtonian power-law fluids, including plane 

Poiseuille flow in a channel, lid-driven cavity flows and polar cavity 

flows. 

2. Mathematical model for non-Newtonian power-law fluid 

flows 

In this work, our attention will be focused on two-dimensional 

incompressible non-Newtonian power-law fluid flow. The mathe- 

matical model of this flow can be written as [20] : 

∂ρ

∂t 
+ ∇ ·( ρu ) = 0 (1) 

∂ρu 

∂t 
+ ∇ ·(ρuu ) + ∇p − ∇ ·τ = 0 (2) 

where ρ , u and p are respectively the fluid density, velocity and 

the pressure; τ is the shear stress determined by the constitutive 

equation of the power-law fluid: 

τ = μ
(| ̇ γ| ) ˙ γ (3) 

Here, ˙ γ is the shear rate defined by 

˙ γ = ∇u + (∇u ) T , (4) 

and | ̇ γ| is defined by | ̇ γ| = 

√ 

( ̇ γ : ˙ γ ) / 2 . For the non-Newtonian 

power-law fluid considered in this work, the effective viscosity 

μ( | ̇ γ| ) is a non-linear function of the shear rate ˙ γ: 

μ
(| ̇ γ| ) = μPL | ̇ γ| n −1 

(5) 

In Eq. (5) , μPL and n are two modeling parameters, respectively 

known as the flow consistency coefficient and power-law index. 

When n < 1, Eq. (5) models a shear thinning or pseudo-plastic fluid. 

When n > 1, it models shear thickening or dilatant fluid, and when 

n = 1, it represents a Newtonian fluid. 

3. MRT-LB model and Chapman–Enskog expansion analysis 

3.1. MRT-LB model 

The lattice Boltzmann equation with multi-relaxation-time 

(MRT) based-BGK approximation can be written as [11,20] : 

f (x + e αδt , t + δt ) − f (x , t) = −M 

−1 SM 

[
f (x , t) − f ( eq ) (x , t) 

]
, 

α = 0 , 1 , . . . , N, (6) 

where x represents a physical location; δt is the streaming time 

step and e α is the particle velocity in the α direction; N is the 

number of discrete particle velocities; f and f ( eq ) are the discrete 

DDF and its corresponding equilibrium state, which can be written 

as: 

f ( 
eq ) 

α ( x , t ) = ρw α

[
1 + 

e α·u 

c 2 s 

+ 

( e α·u ) 
2 − ( c s | u | ) 2 
2 c 4 s 

]
(7) 

Here, the coefficients w α and the sound speed c s are respec- 

tively given as w 0 = 4 / 9 , w 1 ∼4 = 1 / 9 , w 5 ∼8 = 1 / 36 and c s = c/ 
√ 

3 . 

In 2D case, the D2Q9 lattice velocity model is used and can be 

written as 

e α = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 α = 0 

( cos [ ( α − 1 ) π/ 2 ] , 

sin [ ( α − 1 ) π/ 2 ] ) c α = 1 , 2 , 3 , 4 

√ 

2 ( cos [ ( α − 5 ) π/ 2 + π/ 4 ] , 

sin [ ( α − 5 ) π/ 2 + π/ 4 ] ) c α = 5 , 6 , 7 , 8 

(8) 

Here c = δx / δt , δx is the lattice spacing. The macroscopic den- 

sity ρ and momentum ρu are computed by the first and second- 

order lattice moments of f 

ρ = 

N ∑ 

α=0 

f α and ρu = 

N ∑ 

α=0 

f αe α (9) 
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