
Journal of Non-Newtonian Fluid Mechanics 235 (2016) 64–75 

Contents lists available at ScienceDirect 

Journal of Non-Newtonian Fluid Mechanics 

journal homepage: www.elsevier.com/locate/jnnfm 

A systematic approximation of discrete relaxation time spectrum from 

the continuous spectrum 

Jung–Eun Bae, Kwang Soo Cho 

∗

Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, Korea 

a r t i c l e i n f o 

Article history: 

Received 28 March 2016 

Revised 3 May 2016 

Accepted 16 July 2016 

Available online 19 July 2016 

Keywords: 

Discrete relaxation spectrum 

Linear viscoelasticity 

Levenberg–Marquardt method 

a b s t r a c t 

Most of viscoelastic models contain linear and nonlinear viscoelastic parameters and the linear viscoelas- 

tic parameters correspond to relaxation time spectra of materials. The relaxation spectra can be classi- 

fied into continuous and discrete ones. Discrete relaxation time spectrum is more convenient to simu- 

late multi-mode models than continuous one because it demands shorter calculation time. It has been 

demonstrated that the continuous spectrum is uniquely determined in views of theoretical (Fuoss and 

Kirkwood, 1941; Davies and Anderssen, 1997) [1,23] as well as empirical approaches (McDougall et al., 

2014) [5] . Whereas, it is reported that different algorithms for discrete spectrum infer the different re- 

sults from the same data (Malkin and Masalova, 2001) [14]. This is the study on a systematic method 

for discrete spectrum on the basis that a discrete spectrum must be consistent with the continuous one. 

We suggest a simple method to extract discrete relaxation spectrum as a systematically approximated 

continuous spectrum by means of the Levenberg–Marquardt method. The new algorithm is tested and 

compared with previous algorithms using synthesized model spectra and experimental data. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Fuoss and Kirkwood [1] derived an analytical equation that re- 

lates a continuous relaxation time spectrum to loss modulus. Since 

the derivation was made by Fourier transform, the equation of Fu- 

oss and Kirkwood (FK equation) implies the uniqueness of contin- 

uous relaxation spectrum. Several attempts have been made to de- 

velop reliable algorithms for continuous spectrum. The representa- 

tive algorithms are the nonlinear regularization method (NLRG) of 

Honerkamp and Weese [2] , the cubic Hermite spline method (CHS) 

of Stadler and Bailly [3] , the fixed–point iteration (FPI) of Cho and 

Park [4] . McDougall et al. [5] demonstrated the uniqueness of con- 

tinuous relaxation spectrum by use of aforementioned algorithms. 

Continuous spectra allow us to calculate various viscoelastic 

functions by means of integrations while discrete spectra do the 

same thing by summations. Hence, discrete spectra save calcula- 

tion time and the calculation is simpler than that using continu- 

ous spectra. The simplicity of discrete spectra is emphasized when 

a nonlinear viscoelastic flow is simulated by numerical methods. 

Therefore, there have been a number of effort s to develop algo- 

rithms for a discrete relaxation spectrum such as Baumgärtel and 

Winter [6] , Tschoegl and Emri [7] , Fulchiron et al. [8] , Simhamb- 

hatla and Leonov [9] , Malkin and Kuznetsov [10] , Jensen [11] and 
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Cho [12] . The allocation method is a common method to deter- 

mine discrete relaxation time spectrum. It assigns the relaxation 

times of spectrum with equidistance on logarithmic time axis and 

then determines appropriate intensities of the spectrum at each re- 

laxation time. Although, it reduces the number of variables that 

should be determined, the sufficient distance between each point 

should be considered. If the spacing is too large or too close, it is 

found that this method gives negative spectrum. Baumgärtel and 

Winter [6] suggested a new method to determine a discrete relax- 

ation spectrum. This method adjusts not only intensities but also 

positions of a relaxation spectrum. The number of modes is an- 

other important parameter and it is adjusted to provide the best 

fit for input experimental data. It is found that the negative inten- 

sities of the spectrum appear as the number of modes increases. 

In order to overcome this problem, their method merges or elimi- 

nates the unnecessary components of the spectrum. 

Malkin and Kuznetsov [10] developed a method using lineariza- 

tion of functional of errors. It is based on the searching the proper 

coefficients of series which give the minimum of root mean square 

error. Kaschta and Schwarzl [13] have suggested a method de- 

termining retardation time spectrum from creep or recovery data 

with equidistance spacing of retardation strengths. 

Although there have been valuable efforts to develop an ef- 

ficient method for inferring discrete relaxation time spectrum, 

Malkin and Masalova [14] found that the different discrete spec- 

tra are obtained by different algorithms from the same data. 
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It can be said that a discrete spectrum is one of various ap- 

proximations of a unique continuous spectrum. Hence, it may be 

natural that the discrete spectrum cannot be determined uniquely. 

If the uniqueness of the discrete spectrum is denied, what would 

be the conditions for a good algorithm of discrete spectra? Since 

a discrete spectrum is an approximation of the continuous one, 

a good algorithm must give a discrete spectrum consistent with 

the continuous one. The points of discrete spectrum such as ( λi , g i ) 

must be aligned on the curve of continuous spectrum whenever a 

suitable scaling of relaxation intensity, g i is applied. The other con- 

dition is that calculated discrete spectrum should be parsimonious. 

In other words, the number of relaxation time λi must be small as 

possible as the spectrum fits experimental data well. It is obvious 

that fewer relaxation times shorten the calculating time for multi- 

mode viscoelastic models. 

Since there have been a number of reliable algorithms for con- 

tinuous spectrum, we investigated a systematic approach to extract 

discrete spectrum from the well-determined continuous spectrum 

with satisfying the two conditions for a good algorithm for discrete 

spectra. 

2. Theoretical background 

Concrete foundation of linear viscoelasticity connects various 

linear viscoelastic functions and relaxation spectrum. These rela- 

tions are able to be expressed by simple viscoelastic functions. For 

example, storage and loss moduli can be written as [15] 

G 

′ ( ω ) = 

∫ ∞ 

0 

λ2 ω 

2 

1 + λ2 ω 

2 

H ( λ) 

λ
d λ ; G 

′′ ( ω ) = 

∫ ∞ 

0 

λω 

1 + λ2 ω 

2 

H ( λ) 

λ
d λ

(1) 

where ω is angular frequency and λ is relaxation time. H ( λ) is con- 

tinuous relaxation time spectrum. For convenience, substitutions of 

τ = log λ and ν = log ω convert Eq. (1) into the followings. 

G 

′ ( ν) = 

∫ ∞ 

−∞ 

H ( τ ) K E ( τ + ν) d τ ; G 

′′ ( ν) = 

∫ ∞ 

−∞ 

H ( τ ) K V ( τ + ν) d τ

(2) 

where 

K E ( x ) = 

e 2 x 

1 + e 2 x 
; K V ( x ) = 

e x 

1 + e 2 x 
. (3) 

When the relaxation spectrum is given as discrete one, they can 

be calculated as below: 

G 

′ ( ν) = 

N ∑ 

i =1 

g i K E ( τi + ν) ; G 

′′ ( ν) = 

N ∑ 

i =1 

g i K V ( τi + ν) (4) 

where g i is intensity of discrete relaxation spectrum with the unit 

of moduli. The number of relaxation times is noted as N . 

As mentioned before, there is no clue for a uniqueness of dis- 

crete relaxation spectra. Determination of discrete relaxation spec- 

tra deals with much higher degree of freedom compared with con- 

tinuous relaxation spectra. It means that the algorithm should de- 

termine not only relaxation times and intensities at each time but 

also the number of modes assuring the best fit for input data con- 

currently. In order to reduce the degree of freedom, we assumed 

that intensities of a discrete relaxation spectrum are closely related 

to the continuous relaxation time spectrum by means of a suitable 

scaling relation. Assumed constraint can be written as 

σH ( τk ) = g k . (5) 

Scaling factor σ is derived as 

ϕ ≡
∫ τmax 

τmin 

H ( τ ) d τ = 
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k =1 

g k ; σ = 

∫ τmax 

τmin 
H ( τ ) d τ
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ϕ 

N ∑ 
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(6) 

for any k . Note that ϕ is a constant calculated by the integration of 

the continuous relaxation spectrum, while σ depends on the dis- 

crete relaxation times. The scaling factor σ should be kept updat- 

ing when τ k moves. Eq. (6) indicates that the intensities of a dis- 

crete relaxation spectrum can be spontaneously inferred from the 

well–determined continuous relaxation spectrum. Attention should 

be paid to distinguish σ and the scaling factor h o demonstrated by 

Baumgärtel and Winter [16] . Detailed derivation is introduced by 

McDougall et al. [5] for equally spaced relaxation times. 

H ( τ = τk ) = g k / h o (7) 

An algorithm of Baumgärtel and Winter [16] is based on the 

nonlinear regression to determine a discrete relaxation spectrum, 

while a newly developed algorithm is to solve the inverse prob- 

lem based on a constraint of Eq. (5) . The method of Baumgärtel 

and Winter [16] keeps the number of relaxation times small. This 

method is included in a widely distributed software called IRIS ۛ. 

It determines the optimum discrete relaxation spectrum iteratively 

and this algorithm is patronized by many researchers in academic 

and industrial fields, but details of the algorithm are not published. 

In the case of newly developed algorithm, we have only to de- 

termine the positions of discrete relaxation times based on least 

square error, when the continuous relaxation spectrum is plausibly 

determined. In order to solve the inverse problem of least square 

error, the Levenberg–Marquardt method is adopted. The objective 

function can be written as 
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[ 
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where M is the number of storage or loss modulus and 

˜ H ( λk ) is 

scaled relaxation spectrum as below 

˜ H ( τk ) = 

σ

ϕ 

H ( τk ) = 

g k 
ϕ 

(9) 

Because the intensities of the discrete relaxation spectrum are 

decided spontaneously, the relaxation time should be imposed 

where the minimum value of objective function is obtained. The 

normal equation can be derived as 

˜ H 

′ ( τk ) = 

1 ∑ N 
m =1 H ( τm 

) 

d H ( x ) 

d x 

∣∣∣∣
x = τk 

(10) 

∂ 

∂ τi 
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where K ( x ) can be K E or K V of Eq. (3) . K 

′ ( x ) can be 

K 

′ 
E ( x ) = 

2 e 2 x (
1 + e 2 x 

)2 
or K 

′ 
V ( x ) = 

e x − e 3 x (
1 + e 2 x 

)2 
(12) 

For convenience, the objective function of Eq. (8) can be written 

in a matrix notation. Let us define M –dimensional column vectors 
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