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a b s t r a c t 

When a cavity forms near a solid boundary a liquid jet can form directed towards the boundary, causing 

the generation of high pressures at the wall (potentially causing damage) and the formation of a toroidal 

bubble. In this paper several recent developments in the boundary element modelling of the dynamics of 

cavitation bubbles in viscoelastic fluids are presented. The standard formulation of the boundary element 

method (BEM) is in terms of a boundary integral equation with a singular kernel. A reformulation of 

the BEM in terms of a non-singular kernel is shown to provide enhanced stability. In situations when 

a liquid jet forms and impacts the far side of the bubble there is a transition to a toroidal form. This 

topological singularity in bubble geometry is modelled by placing a vortex ring inside the bubble to 

account for the circulation in the fluid and the discontinuity in potential following jet impact. The bubble 

dynamics are dependent on the initial stand-off distance from the boundary as well as the viscous and 

elastic properties of the fluid. It is shown that, while the viscosity of the fluid inhibits jet formation, 

the dynamics are particularly dependent on the relative strength of viscous, elastic and inertial forces. 

In particular, if the Deborah number is large enough elastic effects effectively negate fluid viscosity and 

behaviour similar to the inviscid case is recovered in terms of liquid jet formation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Despite their small size, cavitation bubbles can exhibit extreme 

physics with immense increases in pressure and temperature oc- 

curring during collapse. Their tendency to focus and concentrate 

energy, forces and stresses as well as emitting shockwaves means 

that they have the potential to cause damage to nearby surfaces 

and structures. This destructive behaviour has been utilised to ad- 

vantage in a number of biomedical applications such as extra- 

corporeal shock wave lithotripsy (ESWL) [35] , ultrasound contrast 

imaging [9] and sonoporation [29] . An understanding of the be- 

haviour of cavitation bubbles is essential to improve the effective- 

ness of each of these distinct procedures and to ensure that dam- 

age is restricted to the targeted areas. 

The dynamics of an initially spherical bubble in an infinite ex- 

tent of fluid was originally studied by Lord Rayleigh [37] , motivated 

by the damage caused to ship’s propellers from collapsing cavita- 

tion bubbles. The dynamics is described by the Rayleigh Plesset 

equation, the solution of which provides the evolution of the bub- 

ble radius. 
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Early theoretical work modelling a bubble near a rigid wall 

[36,46] was based on perturbations of the spherically symmet- 

ric solution developed by Rayleigh [37] . Later, Chahine and Bovis 

[12] extended this perturbation analysis to include the effects of 

surface tension using matched asymptotic expansions in powers of 

a small parameter ε defined by 

ε = 

R m 

h 

, (1) 

where R m 

and h are the maximum bubble radius and distance from 

the centre of the bubble to the wall, respectively. However, this 

analysis is only valid for small values of ε and therefore is not ap- 

plicable for the cases of interest in this paper where the bubble 

is near the wall for which ε ≈ 1. An alternative theoretical study 

was undertaken by Naude [31] who solved the Laplace equation 

for the velocity potential using Legendre polynomials and extended 

the theory to allow for larger perturbations. 

The development of high-speed cameras allowed accurate pho- 

tographs of bubble shape to be captured, the most notable early 

experimental study was that of Benjamin and Ellis [2] . Their ex- 

periments involved a Perspex sheet with cavities grown from nu- 

clei situated at various small distances from it. The main phenom- 

ena captured in their experiments were the formation of a liquid 

jet in the direction of the rigid wall and the subsequent transi- 

tion to a toroidal form. Benjamin and Ellis also seem to have been 
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the first to realise the importance of the Kelvin Impulse in cavi- 

tation bubble dynamics. The Kelvin Impulse is the apparent iner- 

tia of the cavitation bubble and can be used to determine the di- 

rection of the bubble centroid and liquid jet [4] . Lauterborn and 

Bolle [23] measured jet velocities up to 120 m/s for a bubble 

near a solid plate and observed a small counterjet away from the 

boundary due to the bubble being driven towards the wall during 

collapse. 

Early developments in numerical methods for bubble dynamics 

included the marker and cell method [30] which enabled the later 

stages of collapse to be predicted, beyond what was possible us- 

ing perturbation techniques. The first fully numerical paper for de- 

scribing the complete collapse of a cavitation bubble near a rigid 

wall was by Plesset and Chapman [34] . They developed a finite dif- 

ference method based on cylindrical coordinates with the veloc- 

ity potential determined from boundary conditions at the surfaces 

and at infinity. Their model demonstrated a remarkable agreement 

with the experiments of Lauterborn and Bolle [23] and, in particu- 

lar, predicted the formation of a liquid jet. 

To model a non-spherical bubble, the boundary element 

method (BEM) is often used. The BEM requires significantly less 

computational time and memory compared to other numerical 

methods such as finite elements or spectral elements since only 

the boundary is discretised. An additional advantage of BEM is 

that it is able to model the bubble surface as a true disconti- 

nuity obviating the need to employ sophisticated interface track- 

ing techniques. The BEM was originally used to model a cavi- 

tation bubble by Guerri et al. [14] . It was further developed by 

Blake et al. [5,6] who considered the dynamics of an axisym- 

metric, vapour-filled bubble near a rigid wall and free surface. 

Since these early works a plethora of extensions of BEM have fol- 

lowed which have included the effects of buoyancy [43] , elasticity 

[19] and viscoelasticity [27,42] . In terms of bubble topology exten- 

sions have included treatment of curved surfaces [41] and toroidal 

bubbles [3,44,47] . 

Improvements have also been made to BEM in terms of the ac- 

curacy of the discretisation of the bubble surface through the use 

of high-order (cubic and quintic) splines [25,42] . The improved ac- 

curacy of these spline discretisations mean that far fewer nodes are 

required to discretise the bubble surface, leading to improved com- 

putational performance. The standard BEM formulation in terms of 

a boundary integral equation contains kernels that are singular due 

to the divergence of the Green’s function and its derivative around 

the source point. Additionally, when two nodes on the surface are 

close, near-singular behaviour leads to ill-conditioned linear sys- 

tems. In this paper, a non-singular BEM formulation based on ideas 

of Klaseboer et al. [39] is developed for predicting bubble dynam- 

ics in the vicinity of a rigid wall. The non-singular formulation re- 

moves these singularities at the outset leading to a formulation of 

the BEM that is much more numerically stable. 

The non-singular BEM formulation is found to dramatically re- 

duce numerical errors produced by nodes becoming too close to- 

gether. Consequently, the smoothing schemes typically used in 

the standard BEM formulation are no longer required to produce 

smooth bubble profiles. The use of quintic splines is shown to be 

more efficient than cubic splines in terms of the number of nodes 

required to attain a prescribed accuracy. The dynamics of a bubble 

in an Oldroyd-B fluid are found to be determined by a competition 

between viscous, elastic and inertial forces. Typically, viscous ef- 

fects tend to reduce velocities and to inhibit jet formation although 

this can be negated by the elasticity of the fluid. For certain values 

of Reynolds and Deborah numbers a strong liquid jet occurs in the 

direction of the boundary, similar to the inviscid case. In contrast, 

however, the bubble centre is much thinner, resulting in the bub- 

ble rebounding away from the wall and negative pressures being 

generated. 

2. Mathematical model 

Consider a bubble initially spherical in shape and whose cen- 

troid is a distance h , known as the initial stand-off distance, from 

a rigid boundary of infinite extent. It is assumed that the bubble 

remains axisymmetric for all time, effectively reducing the dimen- 

sion of the problem. Inherent in this assumption is that the bubble 

is stable to distortions from symmetry. Although this is not always 

the case, it is generally found to be true for small cavitation bub- 

bles [7] . Additionally, the axisymmetric case can be seen as provid- 

ing the instance of maximum jet speeds and pressures and thus is 

an indicator of maximum potential damage to nearby surfaces. It 

is also assumed that the fluid is incompressible and irrotational. 

Since we are concerned with high speed bubble 

growth/collapse phenomena, it is reasonable to assume that 

the flow is inertia dominated in the bulk with viscous and vis- 

coelastic effects being negligible. However, there are always thin 

boundary layers near the bubble where these effects can be 

appreciable due to the need to satisfy the physical stress boundary 

conditions. The thickness of the boundary layer depends on the 

competing influences of viscosity and elasticity and is approx- 

imately 1 / 
√ 

( ReDe ) . This justifies neglecting viscous diffusion 

when elastic effects are dominant and demonstrates that even for 

moderate Re there is a return to inviscid behaviour in this case. 

Hence, the assumption that the entirety of the flow is irrotational 

with viscous and viscoelastic effects appearing through the normal 

stress balance at the bubble/free surface provides a consistent 

description of the physical problem. Despite not offering a solution 

to the full equations of motion, the irrotational assumption, at 

the very least, provides important and relevant insights into the 

dynamics of the problem. 

In order to formulate a velocity potential, φ, which satisfies 

the Laplace equation, it is necessary to assume incompressibility. 

The primary condition needed for this approximation to be valid is 

[1] 

M 

2 � 1 , (2) 

where M = 

U 
c is the Mach number, c is the speed of sound in the 

liquid and U is the magnitude of variations of the fluid velocity 

with respect to both position and time. It is reasonable to assume 

incompressibility if M 

2 < 0.2. Brujan [8] noted that in the late 

stages of collapse when a jet forms the bubble wall velocities can 

approach the speed of sound which means that the condition (2) is 

violated and liquid compressibility can no longer be ignored. These 

high velocities also give rise to very large pressures in the fluid. 

Although methods based on potential theory predict initial bub- 

ble dynamics very well they can break down in the final stages 

of collapse when compressibility effects become important due 

to their inability to simulate shock waves, for example. Recent 

work has focused on developing methods capable of solving the 

Euler equations in order to handle shock waves and interfaces 

in a robust fashion. For example, So et al. [38] have developed 

an interface sharpening method for two-phase compressible flow 

simulations based on solving an anti-diffusion equation for the 

volume-fraction field that counteracts the numerical diffusion re- 

sulting from the underlying VOF discretization scheme. Johnsen 

and Colonius [16] have developed a high-order accurate shock- 

and interface-capturing scheme using a weighted essentially non- 

oscillatory (WENO) scheme to simulate the collapse of a gas bubble 

in water. However, an accurate treatment of compressible effects 

has yet to be incorporated into viscoelastic cavitation modelling. 

Note that possible limitations of the incompressible model pre- 

sented in this paper are that neither the shock wave generated at 

jet impact nor the wave reflected back into the bubble is modelled. 

Note that in real-life situations, a shock wave would be generated 

if the bubble initially expands at a speed larger than the speed 
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