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a b s t r a c t 

This study is concerned with finite element/volume modelling of contraction–expansion axisymmet- 

ric pipe flows for thixotropic and non-thixotropic viscoelastic models. To obtain solutions at high 

Weissenberg numbers ( Wi ) under a general differential form W i 
∇ 
τp = 2( 1 − β) D − f τp , both thixotropic 

Bautista–Manero micellar and non-thixotropic EPTT f -functionals have been investigated. Here, three key 

modifications have been implemented: first, that of convoluting EPTT and micellar Bautista–Manero f - 

functionals, either in a multiplicative ( Conv ∗) or additive ( Conv + ) form; second, by adopting f -functionals 

in absolute form (ABS- f -correction); and third, by imposing pure uniaxial-extension velocity-gradient 

components at the pure-stretch flow-centreline (VGR-correction). With this combination of strategies, 

highly non-linear solutions have been obtained to impressively high Wi [ = O(50 0 0 + )]. 

This capability permits analysis of industrial applications, typically displaying non-linear features such 

as thixotropy, yield stress and shear banding. The scope of applications covers enhanced oil-recovery, in- 

dustrial processing of plastics and foods, as well as in biological and microfluidic flows. The impact of 

rheological properties across convoluted models (moderate-hardening, shear-thinning) has been observed 

through steady-state solutions and their excess pressure-drop ( epd ) production, stress, f -functional field 

structure, and vortex dynamics. Three phases of vortex-behaviour have been observed with rise in elas- 

ticity, along with upstream–downstream Moffatt vortices and plateauing epd -behaviour at high- Wi levels. 

Moreover, enhancement of positive-definiteness in stress has improved high- Wi solution attenuation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The theme of this study is particularly concerned with exploring 

predictive solutions for thixotropic worm-like micellar systems 

under medium to high elasticity conditions. To achieve this goal, 

convoluted hybrid constitutive models have been developed and 

embellished upon, utilising base Bautista–Manero (MBM) models 

to accommodate the dynamic micellar response, and grafting 

these upon exponential Phan–Thien–Tanner (EPTT) models for 

rubber-network response. The class of time-dependent MBM 

models follow those developed in [1–5] . In contrast, the time- 

independent network-based EPTT models were first proposed in 

[6] , though more widely used today for many polymeric systems 

due to their inherently robust numerical characteristics. The work 

concentrates on the axisymmetric contraction–expansion flow 

problem, of geometric ratio 4:1:4 with rounded contraction-cap 

and recess-corners. 
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The issue of extraction of highly-elastic numerical prediction 

is tackled in a number of different directions. First, convolution 

of MBM and EPTT models is proposed, through their network- 

structure ( f -) functionals, of multiplicative and additive forms. Sec- 

ond, and based on physical grounds, by appealing to only absolute 

values in structure-function dependency (ABS- f -correction), which 

controls non-linear response (see [5] ). Third, through the problem 

approximation and its discretisation, via the imposition of consis- 

tent velocity gradient representation along the pure-stretch cen- 

treline of the flow (VGR-correction). The many relevant factors in- 

fluencing the determination of particularly high elastic solutions 

(and their limitation in strain-hardening context) are discussed 

in depth in [5] . These aspects touch on: the numerical technique 

and discretisation for independent variables (stress, velocity, pres- 

sure, velocity-gradient); possible loss of IVP (Initial Value Problem) 

evolution and lack of positive definiteness retention (leading to 

stress-subsystem eigenvalue ( s i ) analysis, s i –N 1 centreline relation- 

ship); the complex flow problem itself (sharp stress boundary lay- 

ers, flow singularities); and the particular constitutive equation of 

choice [5] . 
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Worm-like micelle solution systems are a versatile family of 

fluids, composed of mixtures of surfactants and salts. Typi- 

cal surfactants are cetyltrimethylamonium bromide (CTAB) or 

cetylpyridinium chloride (CPyCl); common salts are sodium salicy- 

late (NaSal) in water [4,7] . These components interact physically, 

depending on concentration, temperature and pressure conditions, 

to form elongated micelles. Such elongated constructs entangle 

and provoke mechanical interactions, stimulating breakdown and 

formation of internal structure [4] . This has consequences on 

the material properties of viscosity and elasticity. This complex 

constitution spurns highly complex rheological phenomena [7] , 

and manifests features associated with thixotropy [1] , pseudo 

plasticity [1–5] , shear banding [8–13] and yield stress [14,15] . 

These systems have been coined ‘smart materials’ , as their rheol- 

ogy dynamically adjusts to conform to prevailing environmental 

conditions. Such features render these systems as ideal candidates 

for varied processing and present-day applications. Examples of 

such application include use as drilling fluids in enhanced oil- 

reservoir recovery (EOR), additives in house-hold-products, paints, 

cosmetics, health-care products, and as drag reducing agents [4,7] . 

On wormlike micellar modelling, many approaches have been 

pursued to describe micellar flow behaviour. The original Bautista–

Manero–Puig (BMP) model [1–2] consisted of the upper-convected 

Maxwell constitutive equation to describe the stress evolution, 

coupled to a kinetic equation to account for structural flow- 

induced changes and, was based on the rate of energy dissipation. 

Subsequently, Boek et al. [3] corrected the BMP model for its un- 

bounded extensional viscosity in simple uniaxial extension – thus 

producing the base-form MBM model employed in the present 

analysis. This model has been implemented in complex flows such 

as in 4:1 contraction flow [16] and 4:1:4 contraction–expansion 

flow [4] . Therein, inconsistency has been exposed in excess pres- 

sure drop ( epd ) predictions at the Stokesian limit. Subsequently, 

this anomaly has been overcome [4] by including viscoelastic- 

ity within the structure construction-destruction mechanism. Two 

such model-variants have appeared, with energy dissipation given: 

(i) by the polymer contribution exclusively (NM_ τ p model, as 

adopted in the present article), and (ii) by the combination of the 

polymer and solvent contributions (NM_T model). These consid- 

erations have introduced new physics into the material response, 

by explicitly coupling thixotropic and elastic properties. Moreover, 

new key rheological characteristics have also been introduced, such 

as declining first normal stress difference in simple shear flow [4] . 

For completeness from the micellar literature, one may cite 

other alternative modelling approaches, though these have largely 

focused on simple flows and the shear-banding phenomena. The 

VCM (Vasquez–Cook–McKinley) model, based on a discrete version 

of the ‘living polymer theory’ of Cates, has been tested in simple 

flows, where rheological homogeneity prevails [17] , and under 

conditions of shear-banding. VCM predictions captured the linear 

response of experimental shear data for CPyCl/NaSal concentrated 

solutions under small amplitude oscillatory shear and small ampli- 

tude step-strain experiments [18] . Moreover, Zhou et al. [19] found 

reasonable agreement with experimental data of Taylor–Couette 

and microchannel geometries and VCM predictions. Another ap- 

proach consists of using the Johnson–Segalman model, modified 

with a diffusion term in the polymeric extra-stress equation 

(the so-called d-JS model) [20] . This model was found to predict 

shear-bands in cylindrical Couette flow. The Giesekus model has 

also been used in the representation of wormlike micelles under 

simple shear scenarios, whilst using the non-linear anisotropy 

coupling parameter to introduce shear-banding conditions [21] . 

Here under large amplitude oscillatory shear, a straightforward 

method was proposed to estimate the Giesekus non-linear pa- 

rameter. Consequent Giesekus predictions were then found to lie 

in quantitative agreement with data for low-concentration CTAB 

wormlike-micellar solutions. 

Paper overview – in this article, convoluted equations of state 

are proposed based on the non-thixotropic network-based PTT 

and thixotropic micellar MBM parent models. Here, two con- 

volution options have been devised, with additive ( Conv + ) and 

multiplicative ( Conv ∗) f -functionals. Their rheometric response , via 

shear and extensional data, has been correlated to that within ax- 

isymmetric 4:1:4 contraction–expansion complex flow solutions. 

In this respect, streamline patterns, N 1 -fields, f -functional and 

pressure-drops have been analysed. Moreover, High-Wi solutions 

[ Wi = O(50 0 0 + )] are reported, achieved via ABS- f -correction and 

VGR-correction. Vortex activity has revealed a number of indepen- 

dent phases of interest. In this, upstream vortex enhancement has 

been identified at low elasticity levels, followed by complete sup- 

pression, somewhat reflecting strain-hardening/softening response. 

At high elasticity levels, a second stage of upstream–downstream 

vortex enhancement has been observed, along with secondary 

Moffatt vortices, of form suppressive-upstream and enhancing- 

downstream. The ABS-VGR correction (implying the simultaneous 

use of both ABS- f and VGR-corrections) delays any loss of posi- 

tive definiteness, observed through reduced negativity of the sec- 

ond eigenvalue of the stress-subsystem, corresponding to the con- 

formation tensor at the centreline. This has been correlated with 

f-functional values across the flow-field (now, f ≥ 1), which grow 

as elasticity rises, thus ensuring positive viscosity estimation. Ex- 

cess pressure-drop ( epd ) data asymptote to a plateau at high- Wi 

[ Wi = O(10 3 )]. At very high- Wi ( Wi > 10 3 ), epd -data degenerate due 

to inconsistencies in inner-field to flow-outlet conditions. These in- 

consistencies are dealt with by imposing periodic boundary condi- 

tions at the inlet and outlet regions. 

2. Governing equations, constitutive modelling and theoretical 

framework 

2.1. Governing equations and constitutive models 

The present flow context of interest is that of steady flow, under 

incompressible and isothermal conditions. In a non-dimensional 

framework, whilst assuming implied 

∗notation on dimensionless 

variables (see on), the governing equations for mass conservation 

and momentum transport equations for viscoelastic flow become: 

∇ · u = 0 , (1) 

Re 
∂u 

∂t 
= ∇ · T − Re u · ∇u − ∇p. (2) 

Here, t represents time, an independent variable; the spatial 

gradient and divergence operators apply over the problem domain; 

field variables u , p and T represent fluid velocity, hydrodynamic 

pressure and stress contributions, respectively. Moreover, the to- 

tal stress ( T ) is split into two parts: identifying, a solvent compo- 

nent τs (viscous-inelastic τs = 2 βD ) and a polymeric component τp . 

Then, D = ( ∇u + ∇u 

T )/2 is the rate of deformation tensor, where 

the superscript ‘T’ denotes tensor transpose. Adopting appropriate 

scales below, corresponding dimensionless variables are defined 

as: 

x ∗ = 

x 

L 
, u 

∗ = 

u 

U 

, t ∗ = 

U 

L 
t, D 

∗ = 

L 

U 

D , 

τp 
∗ = 

τp 

( ηp0 + ηs ) 
U 
L 

, p ∗ = 

p 

( ηp0 + ηs ) 
U 
L 

. 

A reference viscosity may be taken as the zero shear-rate vis- 

cosity ( ηp0 + ηs ). Here, ηp 0 is the zero-rate polymeric-viscosity and 

ηs is the solvent-viscosity. Then, from this the solvent-fraction can 



Download English Version:

https://daneshyari.com/en/article/670418

Download Persian Version:

https://daneshyari.com/article/670418

Daneshyari.com

https://daneshyari.com/en/article/670418
https://daneshyari.com/article/670418
https://daneshyari.com

