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a b s t r a c t 

Recently, we proposed a non-Newtonian fluid model containing two separate relaxation processes to treat 

straining ad material rotation and demonstrated good fitting to realistic rheological functions of poly- 

meric flow. The model described in the present paper is an extension and improvement of the previous 

model. Particularly, a different approach is adopted to handle the effects of finite stretch on the basis 

of finite chain dynamics. The resulting model shows excellent fitting to experimental results with fewer 

model parameters than the previous model. All model parameters are linked to corresponding physical 

processes and can be readily determined from standard rheological plots. This study also revealed several 

interesting relations between rheological functions that are worth further investigations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Flow of polymer melts and solutions typically displays the fol- 

lowing important characteristics: ( 1 ) shear thinning, ( 2 ) normal 

stress differences in simple shear, ( 3 ) elongational thickening in 

coaxial extensions, and ( 4 ) non-indefinite growth of extensional 

stresses. Closed-form constitutive equations that explicitly corre- 

late kinematic variables such as the strain rate tensor to the stress 

tensor are highly desired in modeling of polymeric flow of prac- 

tical relevance. However, conventional fluid models of the Reiner- 

Rivlin type encounter a difficulty in differentiating flow types and 

predicting the above non-Newtonian effects in a single constitutive 

model [1–5] . 

Considerable effort s have been made in constructing closed- 

form non-Newtonian fluid models using kinematic variables other 

than the strain rate tensor. A classical approach is to expand the 

Lagrangian deformation history in terms of convective derivatives 

of the strain rate tensor and construct a constitutive model using 

these objective tensors [6,7] . This continuum-derived approach is 

mathematically rigorous; however, a long expansion is needed to 

model three-dimensional flow, and the resulting model coefficients 

in general do not carry direct physical meanings and are difficult 

to fit using experimental results. Schunk and Scriven [8] attributed 

the difference in shear and extension to material rotations and pro- 

posed to include an objective vorticity tensor in constitutive mod- 

eling. Thompson and de Souza [9,10] proposed a kinematic ten- 
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sor to correlate with the persistency of strain of the material in 

three-dimensional flow. Inclusion of these new kinematic variables 

leads to differentiation of rotational flow from irrotational flow so 

that different softening and thickening effects in shear and exten- 

sion can be modeled in a single constitutive model. Interesting re- 

sults have been generated in this direction and additional research 

is being conducted to construct mathematically simple, physically 

sound models using such new kinematic tensors. 

In a recent paper [5] , we proposed a non-Newtonian fluid 

model of type τ = τ ( ̄L ) for fluids containing an elastic structure, 

where L̄ is an objective velocity gradient. The model contains two 

different relaxation processes to separately tackle with rotation 

and straining. The base model with three parameters is able to si- 

multaneously model shear thinning and extensional thickening as 

well as normal stress differences in simple shear. Additional model 

accuracy is achieved by incorporating finite stretch and disentan- 

glement effects. 

The model presented in this paper is an extension and improve- 

ment of the previous model [5] . In the previous model, the veloc- 

ity gradient is projected onto the principle axes of the elastic strain 

tensor to obtain a slip velocity gradient which is used to calculate 

a slip stress that is added to the total stress. To fit realistic experi- 

mental results, a Carreau-type viscosity model is needed for calcu- 

lating the slip stress, resulting in additional fitting parameters. In 

the current paper, we adopt a different approach to treat the ef- 

fects of finite stretch on the basis of the dynamics of a finite chain. 

The new model demonstrated excellent fitting to experimental re- 

sults with fewer model parameters that all can be correlated with 

corresponding physical processes. 
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2. Model development 

Start with basic kinematics. A material point in the Lagrangian 

frame is tracked by a position vector X and in the Eulerian frame 

is represented by a position vector x . The velocity gradient L at a 

material point is defined as L = 

∂v 
∂x 

= { ∂ v i 
∂ x j 

} , where v is a velocity 

vector defined as v = ˙ x . The Eulerian strain rate tensor D is de- 

fined as D = 

1 
2 (L + L T ) . The Finger tensor or the left Cauchy–Green 

deformation tensor B is defined as B = F · F T , where F is a defor- 

mation gradient tensor defined as F = 

∂x 
∂X 

= { ∂ x i 
∂ X j 

} . 
To formulate an improved model, let us first briefly review the 

base model developed in the previous work [5] . Finite stretch is 

not considered in the base model. The major assumption adopted 

to derive the base model is that the accumulated strain of a poly- 

mer coil suspended in a dissipative medium is equivalent to the 

strain accumulated in a perfectly elastic material for a time period 

equal to the relaxation time λ. For coaxial flow (e.g., uniaxial or 

planar extension), this assumption is equivalent to the adoption of 

the following evolution equation: 

( ln B ) ∇ = − 1 

λ
ln B , (1) 

where the Finger tensor B here is used to represent the elas- 

tic strain accumulated in the polymer coil and λ is a relax- 

ation time. The symbol “∇” denotes a convected time derivative 

for the logarithmic strain tensor, defined as ( ln B ) ∇ = ( ln B ) • −
2 D [11] . For steady-state flow with constant D , the solution of 

Eq. (1) is 

B = e 2 λD , (2) 

For general flow with velocity gradient L , Eq. (2) can be ex- 

tended to 

B = e λL̄ · e λL̄ T , (3) 

where L̄ is the objective velocity gradient with the rigid-body part 

of vorticity removed (that is, L̄ = L − �, where � is the rigid-body 

vorticity). The rigid-body vorticity � is determined through this 

relation 

˙ e i = � · e i , (4) 

where e i (for i = 1,2,3) are unit vectors along the principal axes 

of D . More details on the mathematical definition of � and L̄ 

can be found in the previous paper [5] . For easy presentation, 

we drop the bar on L and assume that the velocity gradients 

mentioned in the following text are all objective unless otherwise 

noted. Finally, a new parameter n is introduced to adjust the de- 

gree of rotational relaxation or recovery, resulting in the following 

equation 

B = 

(
e nλL · e nλL T 

)1 /n 
. (5) 

For a Gaussian material, the stress tensor can then be written 

as 

T = G 

(
e nλL · e nλL T 

)1 /n 
, (6) 

where G is the linear modulus. 

The current work starts with Eqs. (5) and ( 6 ) and seeks a sim- 

pler approach to include the effects of finite stretch in the consti- 

tutive model. 

Extensional experiments typically show a maximum viscosity 

at some value of extensional rate [12] . This is caused by the fi- 

nite stretch of individual chains so that chain disentanglement or 

slippage occurs at large deformation . In viscoelastic models, a ceil- 

ing stretch is often incorporated to address this finite extensibility, 

as seen both in dumbbell-type models [13,14] and in tube mod- 

els [15] . A similar idea is endorsed here by introducing a ceiling 

stretch S 0 and modifying the relaxation time and modulus as 

λ = λ0 ( 1 − S/ S 0 ) 
α and G = G 0 / ( 1 − S/ S 0 ) 

β
, (7) 

where S is an equivalent stretch, defined as S = 

√ 

1 
6 ln B : ln B so 

that S is equal to λ ˙ ε in the case of uniaxial extension. The function 

f (S) = ( 1 − S/ S 0 ) 
α involved in Eq. (7) has a similar mathematical 

structure as that of the Warner approximation [16] to the inverse 

Langevin function, but is simpler for mathematical handling in the 

present case. 

The final model can be written by the following equations 

B = 

[
e n λ0 ( 1 −S/ S 0 ) 

αL · e n λ0 ( 1 −S/ S 0 ) 
αL T 

]1 /n 
, (8a) 

T = 

η0 / λ0 

(1 − S/ S 0 ) 
β

B , (8b) 

where η0 = λ0 G 0 is the zero shear viscosity. It can be shown that 

both in shear and in coaxial extension, the two parameters α and 

β have a similar influence on finite stretch. Therefore, one can sim- 

ply set α to 1 and leave β as a single exponent to adjust the effect 

of finite stretch. 

It is noted that Eq. (8a) is in an implicit form because S is a 

function of B . However, since S is a monotonic function of B , this 

equation can be easily solved using a numerical equation-solving 

method, such as the well-known bisection method. 

For coaxial deformation, Eq. (8a) simplifies to 

ln B = 2 λ0 ( 1 − S/ S 0 ) L . (9) 

An analytical solution to Eq. (9) can be readily obtained given 

an irrotational L . 

It should be noted that although the model represented by 

Eq. (8) is mainly derived using continuum mechanics, it does carry 

a physical connotation related to the basic structure of a polymer 

coil. The overall shape of a polymer coil can be represented by 

an ellipsoid. In the undeformed state, the polymer coil mimics a 

sphere while in the deformed state it is like an ellipsoid with dif- 

ferent lengths of major axes. The Finger tensor B is an ellipsoidal 

tensor and therefore can be used to model such shape changes. 

In the current model, we essentially use the Finger B to quantita- 

tively represent the conformation of the polymer coil. This seems 

to be reasonable for both polymer melts and polymer solutions es- 

pecially when the polymer molecule is long and nearly linear. The 

additional effects introduced by the parameters α and β for ac- 

counting for finite stretch are also aligned with the basic dynamics 

of the polymer coil. Particularly, the ceiling stretch for B corre- 

sponds to the maximum stretch of the polymer coil. As the max- 

imum stretch is approached, the elastic stress in the polymer coil 

has to be rapidly increased. This behavior is modeled by the ex- 

ponent β . At the same time, the relaxation process of the polymer 

coil should be sped up, as adjusted by the exponent α. 

3. Model testing 

The following case studies are presented to show that the pro- 

posed non-Newtonian fluid model as represented by Eq. (8) with 

5 model parameters is able to simultaneously predict ( 1 ) shear 

thinning, ( 2 ) first and second normal stress differences in sim- 

ple shear, ( 3 ) elongational thickening in coaxial extensions, and 

( 4 ) non-indefinite growth of extensional stresses. Fitting to rep- 

resentative experimental results demonstrates that the proposed 

model is able to predict realistic material functions in shear and 

extension. 
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