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a b s t r a c t

In this paper we study the planar squeeze flow of a Bingham plastic in the lubrication approximation. We

assume that the domain occupied by the fluid is closed at one end and open at the other (planar geometry).

We consider two cases: (i) planar walls approaching each other in a prescribed way; (ii) parallel walls whose

shape depends on both time and longitudinal coordinate. The dynamics of the unyielded region is determined

exploiting the integral formulation of the linear momentum balance. We prove that in proximity of the closed

end the material is always yielded, so that the rigid part is always detached from it. When dealing with case

(ii), we show that the dynamics of the rigid domain is governed by a very complex integral equation, whose

qualitative analysis is beyond the aims of this paper. Conversely, in case (i) we obtain an almost explicit

solution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A Bingham (or viscoplastic) fluid is a material that behaves as rigid

body for low stress values, or as a viscous fluid (whose viscosity may

depend on the local strain rate) when the stress state exceeds a criti-

cal threshold (we refer the readers to the original papers by Bingham

[3,4] or to [5]). As a consequence, unyielded regions that may stick to

rigid walls or may be transported by the flow can develop within the

material. In extreme cases, such regions may not exist at all or occupy

the whole domain.

Modelling of Bingham materials has become increasingly impor-

tant, especially because many materials encountered in industrial ap-

plications (e.g. foams, pastes, slurries, oils, ceramics, etc.) exhibit vis-

coplastic behaviour. One of the most cited application of the Bingham

model is toothpaste, which visually exhibits the fundamental charac-

ter of viscoplasticity: it flows (i.e. deforms indefinitely) only if sub-

mitted to a stress above some critical value, otherwise it behaves as a

solid body.

Despite the apparent simplicity of the constitutive models (espe-

cially when formulated within the implicit constitutive theory [17–

22]) the flow characteristics of these materials are difficult to predict,

since they involve unknown boundaries separating the yielded and

the unyielded regions. This is noticeably evident when considering

specific settings such as squeeze flow or channel flow with non uni-

form walls. In particular the squeeze problem has been the subject of

a series of papers of both experimental and theoretical nature. Here
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we mention [8,14,16,20,26,30] and the excellent paper [27], together

with recent review by Coussot [7] and the numerous experimental

papers therein cited.

When dealing with particular geometries that allow for major

simplifications, such as the lubrication approximation [28], the Bing-

ham model may lead to paradoxes or contradictions that invalidates

the assumption of a perfectly rigid unyielded phase, [13]. This is the

case, for instance, of the the well known “lubrication paradox”, which

essentially consists in the prediction of a plug speed that varies in

the principal flow direction, meaning that a truly unyielded region

cannot exist (see, for instance, [9,15,23] and [10]). This inconsistency

has led some workers to consider strategies for overcoming the para-

dox. Balmforth and Craster [1] and subsequently Frigaard and Ryan

[9] developed an asymptotic procedure that resolves the lubrication

paradox and builds a consistent solution for thin layer problems. In

practice they resolve the paradox by considering higher order terms

of the lubrication expansion and by showing that actually the plugs

are slightly above the yield stress. They call these regions pseudo

plugs and they prove that true rigid plugs are embedded within them.

In the case of a squeeze flow the problem is still not exhaus-

tively studied, see [2]. For this peculiar problem the lubrication para-

dox was first pointed out by Lipscomb and Denn in [13], who sim-

ply proved that a central unyielded rigid core cannot exist because

of symmetry reasons. A major analysis of the squeeze flow paradox

between parallel discs was performed in [29], where the Bingham

model was viewed as a limiting case of a bi-viscous fluid and where

it was proved that the limiting process tending to the Bingham model

and the lubrication approximation lead to a contradiction. In a recent

paper by Muravleva [16] the planar squeeze flow of a Bingham fluid

is studied exploiting the asymptotic technique introduced in [1]. This
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technique, which has been successfully exploited by Frigaard et al.

[9] for the flow in a channel with slowly varying width, allows to

determine intact true plug regions, overcoming thus the lubrication

paradox.

In this paper we study the same problem presented in Muravl-

eva [16], but we use a different approach developed in [10]. In this

approach, which traces its roots back to [24] and [21], the whole un-

yielded region is treated as an evolving non material volume, whose

motion is determined only by the stress applied by the fluid part.

In practice the balance of linear momentum of the unyielded region

is written using the integral form of the momentum balance, where

only the external stress (i.e. the force exerted by the fluid) acting on

the boundary is required.

The advantage of our procedure lies in the fact that no assumption

has to be made on the order of magnitude of the stress components

when applying the lubrication scaling. In our opinion this is the cor-

rect way to proceed, since in the rigid domain the Cauchy stress is

“indeterminate” and we cannot identify or verify a posteriori which

term can be safely neglected when applying the scaling. The main re-

sult we get is that we are able to determine a “true” unyielded plug

and a “true” yielded surface directly at the leading order with a plug

speed that does not vary in the principal flow direction (no pseudo-

plug or fake yield surfaces). Moreover, differently from the vast ma-

jority of studies on squeeze flow of Bingham plastics, we do not sup-

pose that the velocity of the plates is constant and that the gap width

in which the fluid is confined does not vary with time.

We study the squeeze flow between parallel plates that are ap-

proaching each other in a prescribed way, i.e. planar squeeze flow. We

begin by considering a planar geometry in which one end is closed,

while on the other a known uniform pressure is applied1. Then, in

Section 4, we consider the more general case of time-dependent non-

flat walls. We develop the model assuming that the ratio ε between

the maximum channel width and the channel length is very small, i.e.

the lubrication regime. Accordingly the flow equations are drastically

simplified and explicit solutions can be found.

We prove that the unyielded part is always detached from the

closed end of the channel and confined between the squeezing sur-

faces. Actually the yield condition is met also at the channel closed

end and in a portion of the mid-plane, but both regions have at least

O(ε) measure, so that the microscopic dynamics occurring there can-

not be observed at the leading order approximation. Our analysis is

indeed confined to the leading order and models the flow on a length

scale where O(ε) variations are not observable. A higher order analy-

sis may lead to the detection of unyielded parts even in proximity of

the above mentioned regions, as proved in [12].

2. Derivation of the model

Let us consider the flow of an incompressible Bingham fluid in

a channel of length2 L∗ and amplitude 2h∗(t∗), as depicted in Fig. 1.

Because of symmetry, we confine our analysis to the upper part of

the layer, namely [0, h∗(t∗)]. The velocity field is v∗ = u∗(x∗, y∗, t∗)i +
v∗(x∗, y∗, t∗)j, where x∗, y∗ are the longitudinal and transversal coor-

dinate respectively.

The Cauchy stress is T
∗ = −P∗

I + S
∗, where P∗ = 1/3trT∗ and S is

the so-called deviatoric part. The Bingham constitutive equation can

be written in the implicit form [17–22]

D
∗ =

(
IID∗

2η∗IID∗ + τ ∗
o

)
S

∗, (1)

which automatically gives the mechanical incompressibility con-

dition trD∗ = 0. In particular η∗ is the viscosity, τ ∗
o is the yield

1 We remark that assuming a “closed end” is equivalent to considering an open chan-

nel with symmetry condition.
2 The starred variables indicate dimensional quantities.

Fig. 1. A schematic representation of the squeezing channel.

stress and

D
∗ = 1

2

(∇v∗ + ∇v∗T)
, IIS∗ =

√
1

2
tr S∗2, IID∗ =

√
1

2
tr D∗2.

Eq. (1) allows to express S
∗ as a function of D

∗ only when IIS∗ ≥
τ ∗

o , while D
∗ = 0, ⇔ IIS∗ ≤ τ ∗

o , the stress being constitutively

indeterminate.

We assume that the region where IIS∗ ≥ τ ∗
o (yielded) and the re-

gion where IIS∗ ≤ τ ∗
o (unyielded) are separated by a sharp interface

y∗ = ±Y ∗(x∗, t∗) called the “yield surface”. We also define the inner

plug

�∗
p∗ =

{
(x∗, y∗) : x∗ ∈ [0, L∗], y∗ ∈ [−Y ∗,Y ∗]

}
.

Of course, it may occur that Y ∗(x∗, t∗) = 0 for some x∗ ∈ (0, L∗) and/or

for some t∗, so that �∗
p∗ becomes a segment of zero measure. The rigid

plug �∗
p∗ moves uniformly and its velocity is{

u∗ = u∗
p(t∗),

v∗ = 0, (by symmetry).
(2)

Considering a quasi-steady dynamics and neglecting body forces, the

governing equations in the viscous region are the mechanical incom-

pressibility condition

trD∗ = 0,

and

−∂P∗

∂x∗ + ∂S∗
11

∂x∗ + ∂S∗
12

∂y∗ = 0, (3)

−∂P∗

∂y∗ + ∂S∗
12

∂x∗ + ∂S∗
22

∂y∗ = 0, (4)

where S∗
i j

are the components of S
∗, given by (1), when IIS∗ ≥ τ ∗

o .

The integral momentum balance for the whole domain �∗
p∗ , in the

absence of body forces, is given by (see [11], [25] and [6])∫
�∗

p∗

∂

∂t∗ (�∗v∗)dV ∗ +
∫
∂�∗

p∗
�∗v∗(v∗ · n)dS∗ =

∫
∂�∗

p∗
(T∗n)dS∗, (5)

where ϱ∗ is the material density. Neglecting the inertial terms, we get

following equation3∫ L∗

0
[−Y ∗

x∗ T ∗
11 + T ∗

12]Y ∗+ dx∗ + P∗
Y0

Y ∗
0 − P∗

Y1
Y ∗

1 = 0. (6)

3 The expression
[
−Y ∗

x T ∗
11 + T ∗

12

]
Y ∗+ represents the force exerted by the viscous region

on the lateral side of the inner rigid core.
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