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a b s t r a c t

The moving contact line of a thin fluid film can often corrugate into fingers, which is also known as a fin-

gering instability. Although the fingering instability of Newtonian fluids has been studied extensively, there

are few studies published on contact line fingering instability of non-Newtonian fluids. In particular, it is still

unknown how shear-thinning rheological properties can affect the formation, growth, and shape of a contact

line instability. Our previous study (Hu and Kieweg, 2012) showed a decreased capillary ridge formation for

more shear-thinning fluids in a 2D model (i.e. 1D thin film spreading within the scope of lubrication theory).

Those results motivated this study’s hypothesis: more shear-thinning fluids should have suppressed finger

growth and longer finger wavelength, and this should be evident in linear stability analysis (LSA) and 3D (i.e.

2D spreading) numerical simulations. In this study, we developed a LSA model for the gravity-driven flow of

shear-thinning films, and carried out a parametric study to investigate the impact of shear-thinning on the

growth rate of the emerging fingering pattern. A fully 3D model was also developed to compare and verify

the LSA results using single perturbations, and to explore the result of multiple-mode, randomly imposed

perturbations. Both the LSA and 3D numerical results confirmed that the contact line fingers grow faster for

Newtonian fluids than the shear-thinning fluids on both vertical and inclined planes. In addition, both the

LSA and 3D model indicated that the Newtonian fluids form fingers with shorter wavelengths than the shear-

thinning fluids when the plane is inclined; no difference in the most unstable (i.e. emerging) wavelength

was observed at vertical. This study also showed that the distance between emerging fingers was smaller on

a vertical plane than on a less-inclined plane for shear-thinning fluids, as previously shown for Newtonian

fluids. For the first time for shear-thinning fluids, these results connect trends in capillary ridge and contact

line finger formation in 2D models, LSA, and 3D simulations. The results can provide us insights on how to

optimize non-Newtonian fluid properties to minimize a fingering instability in many industrial and biological

applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Gravity-driven thin film flow with fingering instability is of inter-

est in many fields, such as industry (paints [1], contact lens manu-

facture [2], and microchip fabrication [3]), nature (lava flow [4] and

glacier flow [5]), and biomedical applications (microbicidal drug de-

livery [6,7], eye tears and substitutes [8]). In many of the applications,

a uniform coating is desired with no dry spots. Thus, it is very impor-

tant to understand the mechanics of the fingering instability at the

moving contact line of a spreading thin film.

Numerous experimental and analytical/numerical studies have

examined the dynamics of a gravity-driven contact line following

the famous study of Huppert [9]. Schwartz [10] proved the contact

line instability is controlled by surface tension effects. Troian et al.

[11] carried out linear stability analyses (LSA) on thin film flow and
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derived the formulation under the limit of small wavenumber to

show the capillary ridge was responsible for the instability. Bertozzi

and Brenner [12] verified the LSA numerically and developed the

transient model to investigate the transient growth of the fingering

instability. Lin and Kondic [13] studied the instability of the thin film

flowing down an inverted incline. These studies all assumed a con-

stant flux configuration, however, in practical applications, constant-

volume configuration is often needed. In our previous 2D study [6],

we showed how the capillary ridge at the front of the flow evolves for

a constant volume configuration. Espin and Kumar developed a 2D

constant-volume model to study the thin film flow of colloidal sus-

pensions, and showed both the particle concentration and the evapo-

ration have a large impact on the front interface [14,15]. Gonzalez and

Gomba developed a predictive model and integral method to study

the linear stability of the constant volume flow [16,17]. All these stud-

ies provide a systematic approach to deal with the capillary ridge and

contact line instability problem.

However, most of those previous studies were for Newtonian flu-

ids. The fluids used in the above mentioned industrial and biomedical
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applications usually exhibit non-Newtonian behavior, especially

shear-thinning behavior. There are few published studies on con-

tact line instability of non-Newtonian fluids. Balmforth et al. [18]

studied the instability of Bingham fluids using LSA and showed the

yield stress stabilized the contact line. Spaid and Homsy [19,20] used

energy analysis for viscoelastic fluids to show elasticity has a stabi-

lizing effect on the capillary ridge. It is still unknown how the shear-

thinning behavior, for non-Newtonian fluids can affect the contact

line instability. In our previous work [6], we completed a 2D anal-

ysis of shear-thinning fluids. Using travelling waves and numerical

simulations of one-dimensional spreading, we found that increasing

the shear-thinning behavior of polymer solutions decreased the cap-

illary ridge height. This leads to the hypothesis for this study: that

more shear-thinning fluids should have suppressed finger growth and

longer finger wavelength, and that this should be evident in linear

stability analysis and 3D numerical simulations. In summary, the re-

lationship between the emergence and height of a capillary ridge in

a 2D shear-thinning model has not previously been related to the lin-

ear stability analysis and 3D numerical model of the contact line in-

stability. To solve this issue, we need to develop a contact line model

of power-law fluids and identify the importance of different factors

affecting fingering instability.

To verify the linear stability analysis for a Newtonian fluid, Kondic

and Diez [21–25] numerically studied the 3D flow to simulate the fin-

gering instability in the transverse direction. Lin et al. [26] studied 3D

simulations for fluids on an inverted incline for unevenly distributed

fluid viscosity. Those studies were also only for Newtonian fluids. Our

research group has developed a 3D model for power-law fluids [27]

and Ellis fluids [28] to study the spreading speed of a polymer so-

lution and compare to experiments. However, those models did not

incorporate the surface tension effect, and therefore cannot simulate

the fingering instability.

The goals of this study were to: (a) in Section 2, develop a contact

line model using LSA, and study how the shear-thinning effect would

influence the finger growth, and (b) in Section 3, expand to 3D flow

simulations with various perturbations to verify the LSA results.

2. Linear stability analysis

2.1. Methods for linear stability analysis

The fluid is described by power-law constitutive model: [29]

τi j = m|II2D| n−1
2

(
2Di j

)
where ˜̃τ is the stress tensor, m is the consistency of power-law fluid,

2
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] is the second invariant of the shear

rate tensor.

To describe the movement of the fluid’s free surface flow down an

incline, a wetting flow assumption and thin film lubrication approx-

imation are commonly used. A non-dimensional partial differential

equation (PDE) for the 3D flow (i.e. 2D spreading) of power-law flu-

ids can be obtained for the height of the fluid as a function of space

and time, h(x, y, t). A similar detailed derivation was shown in Per-

azzo et al. [30] and our previous publications on power-law models

[6,27]. The resulting non-dimensional thin film equation for a power-

law fluid is:
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where n is the power-law index and n < 1 indicates shear-thinning

fluids. The dimensionless parameter D = cotα(Ca)1/3 reflects the

magnitude of the normal component of gravity force (e.g. D = 0 is

vertical, D = 1 is inclined). The dimensionless parameter Ca = μ0U/γ
is the power-law capillary number, α is the inclination angle, and γ
is the surface tension coefficient. U is a characteristic velocity and μ0

is a characteristic viscosity incorporating the power-law terms. These

latter terms follow the dimensionless groups used for Newtonian flu-

ids [12,21], and were further modified for the power-law variation as

described in more detail in Appendix D of our previous study [6].

To conduct a linear stability analysis (LSA), we first determine

a traveling wave solution. The method described here for traveling

waves and LSA follows the general approach described in detail for

Newtonian fluids by previous authors, e.g. in [12,21]. To find a trav-

eling wave solution, we assume h(x, y, t) is y-independent to reduce

Eq. (1) to its 2D form. Then, we assume constant flux boundary con-

ditions such that the fluid height is flat far from the moving front:

x → −∞, h → 1 and x → ∞, h → b, where b � 1 is the thickness of the

precursor. This boundary condition leads to a traveling wave solution

h0(x, t) in the x direction. Using a moving reference frame, x∗ = x − Ut

traveling with velocity U, the following ODE for h0(x∗, t) is obtained

(dropping ∗ from here forward)
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where the boundary conditions also result in the following expres-

sions

U = 1 − b
1
n +2

1 − b
, f = −b + b

1
n +2

1 − b

Eq. (2) was numerically solved (see Appendix C of [6]) for the trav-

eling wave solution, which may form a capillary ridge. The presence

and height of the ridge depends on many factors, such as D and the

power-law index, n [6].

Next, we can use this traveling wave solution as the ‘base’ solution

in the x direction. When we try to expand to the transverse y direc-

tion, we can simply assume the solution is in the form of a base state

h0 with a perturbation h1, h(x, y, t) = h0(x) + εh1(x, y, t), where

h0, h1 are of O(1) and ε � 1, and substitute it into the thin film PDE

(Eq. (1)). Only terms that are on the order of ε are kept in the result-

ing equation, and h1 can be expressed as a Fourier transform using

the superposition principle, h1(x, y, t) = ∫ 0
−∞ g(x, t)eiqydq, where q

is the wavenumber. We apply the Taylor series to expand the power

terms in Eq. (1). The Taylor approximation is kept in the same order

of ε. We also use the traveling wave solution of Eq. (2) to substitute

the higher order terms. After simplification, we can obtain a PDE for

g(x, t):
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