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A B S T R A C T

A general analytical procedure is proposed to design tapered laminated composite structures. It is based on: 1)
the introduction of two variables representing a laminate configuration, 2) the analytical determination of the
lower bound of the number of layers in each of the segments constituting the construction, 3) the definition of
the reference sublaminate which configuration is transferred to all segments/parts of the construction, 4) the
gradual building of configurations for symmetric balanced laminates having odd or even number of plies. The
solution is verified by the comparison with results existing in the literature for both inner and outer tapers. A
multi-panel composite structure is considered to demonstrate the applicability of the proposed method. As usual,
in a such class of problems, the whole construction is divided into segments/panels. The individual segments are
subjected to the simultaneous action of in-plane, tensile or compressive and shear loads. The present results
demonstrate the simplicity and effectiveness of the method and non-uniqueness of solutions. The paper intends
to clarify the physical sense of the discussed problem.

1. Introduction

Tapered/blended laminated structures have became the standard parts of
modern engineering constructions. The use of thin rectangular plates with
thickness that varies in the directions parallel to the two sides can help the
designer to reduce the weight of the structure. For cases where reduction of
weight is of high importance, such as space structures, this type of plate is the
best choice. The buckling load for these plates is or can be a key factor in
design considerations. In particular, buckling of stepped plates has attracted
much more attention in the past few decades. This type of plate is used ex-
tensively because of its high strength to weight ratio. A variety of theoretical
approaches have been formulated for this class of problems. These ap-
proaches may be applied to study varying thickness plates where the plate
thickness is allowed to vary either as piecewise constant step functions, a
linear function and piecewise linear functions, or as a non-linear function.

The blended/tapered composite structures, formed by dropping off
the plies along mid-plane either internally or externally, are being
widely used in turbine blades, helicopter yokes and robot arms due to
their variable stiffness along various directions.

The behaviour of tapered composite laminates under static and fa-
tigue loading has been widely addressed in the literature – see e.g. the
review papers [1,2]. In the literature survey on tapered/blended com-
posite structures the authors bring out three major categories of taper
configurations: internal taper, mid-plane taper and external taper.
Fig. 1 demonstrates the classical internal taper configuration.

A discussion of buckling behaviour of tapered laminated beams or
plates have also received much attention from researchers. A large
number of investigators have conducted the research on this subject
[3–11]. The buckling analysis of tapered/blended structures is always
associated with the optimization analysis of stacking sequences in all of
adjacent segments in the construction considered. It is worth to point
out that the allowed ply orientations are reduced to a discrete set of
angles such as: {0,± 45, 90} or {0,± 15,± 30,± 45,± 60,± 75,
90}. In the composite construction thickness variations are obtained by
drop ping plies at specific segments (regions). However, it is necessary
to emphasize that the optimization analysis is always reduced to the use
of the “black box” called as genetic algorithms (GA) or evolutionary
algorithms (EA). It is well-known that the above algorithms allows us to
obtain better solutions than initial ones but their location with respect
to the global optimum is unknown.

It is well-known that no search algorithm is superior to any other
algorithm on average across all possible problems. A consequence of
this is that if an algorithm, say genetic algorithm, performs better than
random search on a class of problems, that same algorithm will perform
worse on a different class of problems [12]. From this one might draw
the erroneous conclusion that there is no point in trying to find better
algorithms. However, since we typically are not interested in all pos-
sible problems, this is not a case.

The objective of the present work is to fill this gap between the
approximated optima obtained with the use of GA or EA and the global
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optima by providing exact, analytical solutions to the buckling of ta-
pered multilayered laminated simply supported rectangular plates. It is
reached by the implementation of new types of design variables Muc
[13,14]. The analytical method of solution allows to include also ar-
bitrary constraints arising from various manufacturing requirements.

For aerospace complex structures made of a large number of panels
it is customary and commonly accepted to divide constructions into
many segments and design each of them independently [9,15–17].
Since the load distribution and wing stiffness are membrane dominated
([9] – Fig. 1, [16]) the panel local load approximations are computed
numerically using the membrane FE. The details of the procedure are
described e.g. by Ragon et al. [16], Meddaikar et al. [18]. The mem-
brane loads may vary between segments so that the optimal thicknesses
of them may be also different. To ensure continuity and manufactur-
ability between adjacent composite segments the concept of blending
was introduced by Kristinsdottir et al. [19] and then generalized by van
Campen et al. [20]. In the present approach the load redistribution
between panels due to the thickness variations in the local panel design
is not taken into considerations. It is assumed that the load distribution
at the panel level is fixed.

This paper is organized as follows. Theoretical formulations are
presented in Section 2. The next section presents the formulation of the
optimization problem, Section 4 is devoted to results and discussions.
Three types of problems including buckling optimization are con-
sidered, i.e. buckling of a single monolithic plate, buckling of two
segment panels and buckling of multi-segment blended panels. The
paper ends with conclusions.

2. Buckling of multilayered bi-axially compressed plates

For structural modeling of the plate subjected to the bi-axial com-
pression it is assumed that the coordinate system origin, is located at
the plate corner on the mid-plane – Fig. 2. It is also assumed that the
plate is made of N layers where each of plies has the identical thickness
t/N (t is the total thickness of the panel). The plate is enforced to be
symmetric about its mid-plane, requiring that only a half of the layers
(i.e. N/2) be designed. In addition, the plate is also required to have a
balanced stacking sequence.

Under the above assumptions for a simply supported plates sub-
jected to the bi-axial compression the plate buckles when the parameter
λ reaches the critical value expressed in the following way:
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where Lx, Ly are geometrical plate dimensions, and m, n are numbers of
half-waves in two perpendicular directions corresponding to the plate
co-ordinate system, and Nx, Ny are axial compressive forces per unit
length in the longitudinal x direction and in the transverse y direction,
respectively (Fig. 2). D11, D12, D66 and D22 are classical bending stiff-
ness terms of the laminate. For the symmetric laminates the relation (1)
can be rewritten in the more convenient form:
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where θi denotes an angle of the fibre orientation of the ith layer,
measured from the plate x-y axes to the 1–2 material axes and tL is the
thickness of the individual ply. In the material coordinate system 1–2
E1, E2, G12, ν12 denote the Young moduli in the directions 1, 2, the
Kirchhoff modulus and the Poisson ratio, respectively.

In the design space (z1, z2) the slope of the contours of the constant
λ is characterized by the value of the constant a2. It is positive for
a2 > 0 when βm < 1, and negative when βm > 1.

For rectangular plates made of plies having continuous angle-ply
fibre orientations (± θ) the optimal orientations that maximize buck-
ling loads can be easily derived from the following relation (see Muc
[21,22]):

= = − = = =z θ a
a

θ θ z zcos(2 )
2

or 0 or 90,opt opt opt1
2

3
2 1

2

(3)

Let us note that for plates the optimal fibre orientations are the
function of the geometrical ratio Lx/Ly only (unimodal solutions). As it
is well-known for the identical value of the parameter k, the position of
the maximal buckling load with respect to fibre orientations vary with
the buckling mode (m, n) and the geometrical ratio (Lx/Ly). It is obvious

Fig. 1. Schematic illustration of the internal taper con-
figuration.
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