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a b s t r a c t

Unconventional methods are needed in order to propel swimming objects in viscoelastic liquids. The paper

deals with a locomotion principle based on a cyclic action which utilizes the elasticity of the fluid. The

theoretical model considers any incompressible simple fluid of arbitrarily long memory and any axisym-

metric swimmer of arbitrary profile which performs torsional oscillations of small amplitude. Perceiving

the flow as unsteady perturbation of the rest state, an asymptotic analysis is developed, particularly with

regard to the time-averaged speed of the swimmer in second-order approximation. In doing so, also inertia

effects are considered in addition to the memory and the normal stress effects. A generalized reciprocal

theorem including fluid elasticity proves to be extremely useful. It enables calculating the driving force

on the swimmer without solving the second-order flow problem. General results are illustrated by means

of a spherical swimmer. The analytical findings clearly show the influence of different process parameters

including certain frequency dependent constitutive parameters on the driving force, on the swimming speed

and on the secondary flow field.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Viscous flows around small particles are often characterized by

low Reynolds number, so that the fluid inertia may be neglected in

a theoretical analysis. One speaks about creeping flows. If the fluid

is Newtonian, they have particular properties because the dynamic

equations are linear and time is a parameter only. As a result, any

unsteady creeping Newtonian flow may be understood as sequence of

quasi-steady states and it is time-reversible [1]. Moreover, flow fields

being subject to kinematic boundary conditions are independent of

the viscosity of the fluid.

Unconventional methods are needed in order to propel an ob-

ject which shall swim under those conditions. Due to the time-

reversibility, cyclic actions with a single degree of freedom, for

instance the application of a rigid flapper, do not work. In fact, a

self-propelled swimmer must execute a loop in a multi-dimensional

configuration space [2]. Microorganisms manage it by deforming the

body shape, particularly by the use of cilia and flagella. We refer to a

review on the biological facts and on the fluid mechanical modelling

[3]. Prominent models are so-called squirmers being (hypothetically)
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able to distort their surface, flexible cylindrical tails as mechanical

wave guides and rigid helical bodies which rotate at constant speed.

Most publications concerning self-propulsion in Newtonian flu-

ids under the condition of creeping flow deal with the propelling

force produced by those mechanisms and with the resulting speed

of otherwise force-free swimmers. However, these studies are not es-

pecially relevant in our context because we will analyse an alterna-

tive principle of locomotion which utilizes the elasticity of the fluid

and which does not work in a Newtonian fluid because of the time-

reversibility. So, we mention here only two recent papers. The one is

dedicated to rotating helical bodies as they swim through a Newto-

nian fluid [4]. Assuming a nearly circular cross-section, closed form

analytical predictions have been derived for the swimming speed

(which is independent of the fluid viscosity) and for the torque (pro-

portional to the viscosity). Helical bodies with more complex cross-

sections were included by numerical simulations. The other paper

deals with the hydrodynamic performance of different cilia beat-

ing patterns reconstructed from experimental data [5]. The swim-

ming speed, certain internal moments generated by the cilia and

the swimming efficiency were used as performance measures. Both

publications contain extended lists of references which allow inter-

ested readers to trace back most of the original work on swimming in

linear-viscous fluids.

It should be mentioned that a helical body which propels a swim-

mer forward could also be used as rotor of a screw pump which
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pushes the liquid backward. Both processes are based on the same

functional principle. However, the swimmer moves within the labo-

ratory frame whereas the pump is normally arranged at a fixed po-

sition. A similar analogy exists between self-propelling and pumping

by means of travelling waves along a flexible body surface which will

help us to understand theoretical findings.

With different applications in mind, studies on self-propulsion

are expanded since a couple of years assuming that the fluid has

more complex rheological properties. Both in some biological and

some technical systems, small particles “live” in polymeric liquids.

It is therefore important to explore how microorganisms swim in

such a viscoelastic environment, and how artificial robots should be

actuated in order to propel them. Of course, retaining established

strategies, effects of the viscoelasticity on the swimming speed can

be expected. However, existing reports caused some controversy as

to whether the fluid elasticity enhances or hinders locomotion.

A simple model of a self-propelled swimmer consists of a flex-

ible sheet transmitting a sinusoidal wave train of small amplitude.

In case of a Newtonian fluid, the swimming speed UN is propor-

tional to the wave speed and is independent of the viscosity. Assum-

ing the constitutive equations of an Oldroyd-B fluid, of a Johnson–

Segalman fluid or of a Giesekus fluid, a second-order theory with

respect to the wave amplitude leads in each case to the normal-

ized swimming velocity U/UN = (1 + λ1λ2ω
2)/(1 + λ1

2ω2), where

λ1 is the relaxation time of the fluid, λ2 is the retardation time and

ω is the frequency of the wave [6]. Owing to the inequality λ2 <

λ1, the swimming speed U is always smaller than the Newtonian

value. Exactly the same formula results from an asymptotic anal-

ysis concerning the locomotion of an infinitely long circular cylin-

der due to a small-amplitude travelling wave in an Oldroyd-B fluid

[7]. These findings become comprehensible considering the above

mentioned analogy between force-free swimming and free pump-

ing (without overall pressure difference). Already three decades be-

fore, it has been shown that, under the condition of free pumping,

the volume flux Q of a creeping plane flow due to a travelling wave

train, normalized by the Newtonian value QN, is influenced by the

real part η′(ω) of the complex viscosity and by the zero-shear viscos-

ity η0 of the fluid, Q/QN = η′(ω)/η0 [8]. The formula is true also for

axisymmetric peristaltic pumping [9]. Accordingly, linear-viscoelastic

fluid properties control the pumping throughput and, analogously,

the swimming speed in a second-order approximation. Normal stress

differences exert influence only at higher approximation order. Con-

sequently, constitutive models with the same complex viscosity like

those of Oldroyd, Johnson–Segalman and Giesekus give rise to the

same results. These findings suggest that fluid elasticity impedes lo-

comotion of flexible swimmers. In contrast, there are indications of

an increase of the swimming speed due to nonlinear viscoelastic re-

sponse. Numerical simulations of large-amplitude flagellar beating in

an Oldroyd-B fluid revealed enlargement factors up to 1.25 at Debo-

rah numbers near one [10]. Finally, we point to a numerical study

concerning the locomotion of a spherical swimmer within a nonlin-

ear Giesekus fluid caused by the first two squirmer modes [11]. Ac-

cordingly, the steady flow around a force-free sphere was simulated

under a prescribed surface velocity in polar direction correspond-

ing to vϑ = (B1 + B2 cos ϑ) sin ϑ . The sign of the ratio B2/B1 controls

whether the swimmer gets impetus from its front part or whether

the thrust comes from the rare part. Numerical results regarding

Weissenberg numbers up to 10 show that the swimming speed re-

mains systematically below the Newtonian value. Major differences

are found in the stress field.

In summary, we see that the fluid elasticity modifies the speed

of a free swimmer, but does not produce great enhancements using

the propulsion strategies which work already in case of a Newtonian

fluid. Contrary to these studies, we discuss in the following an al-

ternative principle of purely elastic propulsion. In doing so, we are

encouraged by a recent experimental study which proves that rigid

objects can move in a viscoelastic fluid under time-reversal stimu-

lations [12]. It should be mentioned that in all above-quoted papers

concerning propulsion in viscoelastic fluids, the influence of fluid in-

ertia is completely neglected. In view of microorganisms within their

natural environment, the assumption of creeping flow may be appro-

priate. However, concerning artificial robots with much larger length

scales, it is not certain a priori whether unsteady and convective iner-

tia forces are small compared to viscous and nonlinear elastic forces,

respectively. Thus, we consider these effects in the analysis. Creeping

flow situations are included as special cases.

The mechanism which we will analyse shall be explained roughly,

supported by a few elementary formulas. Imagine the unsteady shear

flow of a Newtonian fluid (density ρ , viscosity μ) near a flat plate that

oscillates harmonically with frequency ω and displacement ampli-

tude εa in its plane (in x-direction). An exact solution of the Navier–

Stokes equations is known which indicates that the velocity field vx(y,

t) of the unidirectional fluid flow can be represented as follows [13]:

vx(y, t) = εaRe

{
exp

(
−

(
iρω

μ

)1/2

y + iωt

)}
. (1)

Re{ . . . } indicates the real part of the complex expression within the

brace. The corresponding shear stress τ xy(y, t) oscillates in phase with

the shear rate ∂vx(y, t)/∂y and the normal stresses σ xx, σ yy, σ zz are

equal and even spatially constant.

A lot changes if the fluid is viscoelastic with more complicated

constitutive properties. Assuming that ε is small, the theory of lin-

ear viscoelasticity is appropriate in a first approximation. In doing

so, the following correspondence principle proves to be most help-

ful: given any solution of the linearized Navier–Stokes equations un-

der harmonically oscillating kinematic boundary conditions, then, in

complex notation, there is a corresponding solution of the linear-

viscoelastic problem under the same boundary conditions with the

complex viscosity η∗(ω) used instead of the Newtonian viscosity.

Thus, replacing μ by η∗(ω), Eq. (1) represents also the first-order ve-

locity field of a viscoelastic fluid. Since the viscosity is complex now,

shear stress and shear rate oscillate no longer in phase. Moreover and

more important in the present context, unsteady normal stress differ-

ences arise in the shear flow under consideration, the time-averaged

values of which are especially relevant. Restricting to a second-order

approximation with respect to ε, we may assume

〈σxx(y, t) − σyy(y, t)〉 = 2κ(ω)

〈(
∂vx(y, t)

∂y

)2
〉

(2)

with positive normal stress coefficient κ(ω). We ignore here for a mo-

ment the second normal stress difference 〈σyy − σzz〉, which is often

relatively small in real liquids, especially in polymer fluids. The ex-

pression in Eq. (2) may be understood as time-averaged extra-stress

in flow direction in addition to the constant pressure. It does not pro-

duce any mechanical effect on the plate since the streamlines are rec-

tilineal. But things are different if the streamlines are curved.

In the paper, we study the situation sketched in Fig. 1. An axisym-

metric body of dimension a is immersed into an incompressible vis-

coelastic fluid at rest and performs torsional oscillations of frequency

ω and of small angular amplitude ε. Under no-slip conditions at the

body surface �, the fluid is forced to oscillate in circumferential direc-

tion. Consequently, the streamlines are circular in linear approxima-

tion, and the mentioned extra-stress is a normal stress in ϕ-direction.

Since it decreases exponentially with increasing distance from the

body, it occurs potentially only within a boundary layer near the sur-

face. So, the time-averaged extra-stress field takes effect like an inho-

mogeneously stretched elastic membrane enclosing the axisymmet-

ric body. It generates a second-order driving force acting on the body

in axial direction for symmetry reasons. We expect a relation of the

kind 〈Fz〉 = ε2κω2a2Cκ(S,V) where the non-dimensional factor Cκ is
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