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a b s t r a c t

The temporal linear stability analysis of shear flow of two-layer viscoelastic fluids, both described using the

upper convected Maxwell (UCM) model, is carried out. The plane Couette flow under creeping flow conditions

both in the absence and presence of pressure gradient is examined to study the role of unmatched elasticities

in the interfacial instability. As the most critical disturbance is known to be of finite wavelength of the order

of channel width, the numerical analysis examines the entire range of disturbance wavenumbers and the

stability map is constructed in the parametric space of fluid Weissenberg numbers to indicate the region of

stable interface. With a focus on optical fiber coating process, the analysis investigates the role of pressure

gradient imposed on the plate-driven flow. Both the adverse and favorable pressure gradients are analyzed to

identify the region for stable coating flow. In the presence of pressure gradient, the region of stable interface

broadens when the high elasticity fluid occupies the region of low shear rate, which is the bottom (top) layer

for the adverse (favorable) pressure gradient. For the two fluids of unmatched rheology, in addition to elastic

instability, the role of viscosity stratification leading to a jump in the shear rate at interface is also examined.

The adverse pressure gradient has a stabilizing effect when more viscous fluid is more elastic, whereas the

favorable pressure gradient tends to stabilize the interface when the less viscous fluid has higher elasticity

than the more viscous fluid.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The two-layer shear flow of viscoelastic fluids is commonly en-

countered in polymer processing applications, like co-extrusion of

polymer melt and two-layer coating of a glass fiber with polymeric

resins. In later application, the primary coating resin is first cured be-

fore applying the secondary coating. If the first coating resin is only

partially cured when the second layer of polymeric coating is dragged

on to the fiber, the flow in the secondary coating cup (known as wet-

on-wet coating) resembles the shear flow of two-layer viscoelastic

fluids caused by the drag force on the glass fiber [1]. For the shear

flow of two or more layered fluids, the interface has tendency to be-

come unstable, which manifests in the form of sustained traveling

wave oscillations at the interface. The unstable interface during the

flow creates defects in the final product and hence, the instability

is undesirable. The stability of the interface strongly depends upon

the properties of the fluids, in addition to the imposed shear rate.

Clearly, when the physical properties of the two fluids are matched,

the two-layer flow resembles a single fluid flow and the interface is

expected to be stable. The stratification of properties, like density,
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viscosity and elasticity, is responsible for the interfacial instability.

The relevant prior work on the instability in stratified fluid flow is

briefly reviewed below. A thorough review of the interfacial instabil-

ity in two-layer flow with a detailed discussion on instability mecha-

nism is presented in [2].

The plane Couette flow of two-layer Newtonian fluids with equal

densities but differing viscosities is unstable to long wavelength dis-

turbances. Yih [3], with the help of longwave asymptotic analysis for

plane Couette flow and plane Poiseuille flow, found that the inter-

face can become unstable solely due to viscosity stratification even

when the Reynolds number is very small. Yiantsios and Higgins [4]

further confirmed the instability due to stratified viscosity and found

that the instability is suppressed by confining the less viscous fluid

in a thinner layer. Importantly, this long wave instability occurs in

the presence of inertia, requiring the Reynolds number to be non-

zero, however, vanishingly small. Even in the absence of long wave

instability, the flow can still become unstable to disturbances of short

wavelength [5]. This instability, in which the disturbance is localized

at the interface, is attributed to jump in the shear rate across the in-

terface. The presence of interfacial tension is known to stabilize the

shortwave instability. The shortwave instability due to unmatched

viscosity also occurs for small but non-zero Reynolds number, neces-

sitating convection of disturbance vorticities leading to the growth
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of the perturbed interface [2]. Thus, the two-layer flow of Newtonian

fluids with different viscosities is stable under creeping flow condi-

tions and it becomes unstable due to inertia, however small in mag-

nitude in comparison to the viscous forces. The long wave instability

caused can be suppressed by geometric arrangement in which the

more viscous fluid occupies bigger region in channel cross-section

than the less viscous fluid. And the shortwave instability is known to

be suppressed by introduction of an interfacial tension. However, the

numerical analysis of Yiantsios and Higgins [4], which examined the

disturbances of any arbitrary wavelength, found that the most dan-

gerous disturbance has wavelength of the order of the channel width,

such that the most critical wavenumber, made non-dimensionalized

by channel width, k ∼ O(1).

The polymeric fluid introduces elasticity behavior through a finite

relaxation time, which generates normal stresses in shear flow. For

two fluids with equal densities and viscosities, the flow can become

unstable if the elasticities are unmatched. For an interface perturbed

from flat state, the normal stress applies an axial (in the direction

of flow) force on the interface depending on the magnitude of fluid

elasticity. For two fluids with dissimilar elasticities, there exists a net

force on the interface, creating a flow disturbance. In the long wave

limit, the flow becomes unstable when the thickness of more elas-

tic fluid is smaller than that for the less elastic fluid [6,7]. In other

extreme of shortwave disturbances, the asymptotic analysis carried

out by Renardy [8] finds that the flow is also unstable to shortwave

mode originating from a jump in the first normal stress difference

across the interface. Interestingly, for the viscoelastic fluids, both the

longwave and shortwave instabilities occur in the inertia-less flow, in

the limit of zero Reynolds number. Thus, mere elasticity stratification

is sufficient to destabilize the interface between two fluids in plane

Couette flow and plane Poiseuille flow in the creeping flow limit [6,8–

10]. While the longwave instability can be suppressed by confining

less elastic fluid to a thinner region than the more elastic fluid, the

shortwave instability may be stabilized by the presence of an interfa-

cial tension. However, it is known that the most critical disturbance

for which the growth rate is maximum is the one with wavelength

comparable to the channel width, i.e. k ∼ O(1), where k is the axial

wavenumber made non-dimensionalized by channel width [9–12].

The experimental studies to investigate interfacial instability in chan-

nel flow of two superposed viscoelastic fluids have also been carried

out to verify the existence of purely elastic instability [13–16]. By im-

posing temporal disturbances of controlled wavelengths, the exper-

iments confirm the numerical predictions that the most dangerous

disturbance is of wavelength comparable to channel width, i.e. maxi-

mum growth rate is for wavenumber k ∼ O(1).

For a two-layer plane Couette flow of upper convected Maxwell

(UCM) fluids, Renardy [8] constructed stability maps in W1 − W2

plane indicating regions of stable and unstable flow, where W1 and

W2 are Weissenberg numbers of two fluids. However, the author con-

sidered only the shortwave disturbances into account. The stability

diagram shows that while the unmatched elasticity leads to short-

wave instability, the case of very dissimilar elasticities, i.e. W1 � W2

or W1 � W2 is found to be stable. Further, due to the shortwave na-

ture of instability, the surface tension tends to suppress the interfa-

cial instability. Interestingly, the viscoelastic fluids introduce a new

length scale, the fluid relaxation time multiplied by the velocity scale.

Hence, the classification of longwave (wavelength greater than chan-

nel width) and shortwave (wavelength smaller than channel width)

modes needs to be redefined. In order to understand the role of the

length scale originating from the fluid relaxation time, Miller and

Rallison [17] analyzed the interfacial instability of two superposed

UCM fluids in the limit of very high fluid elasticity, such that W � k

� 1. Here, even though the disturbance profile does not decay away

from the interface, the growth rate is independent of the fluid thick-

ness, meaning the instability is localized at the interface. However,

unlike shortwave mode, this interfacial instability is not suppressed

by the surface tension, even when it is infinite. The underlying phys-

ical mechanism of the interfacial instability in highly elastic fluids is

not properly understood.

For pressure driven flows in co-extrusion, the interface stabil-

ity in two symmetrically superposed viscoelastic fluids under plane

Poiseuille flow has been carried out by Wilson and Rallison [18]. The

shortwave instability due to non-zero jump in normal stress across

the interface is observed for unmatched fluid elasticities. The numer-

ical analysis finds the maximum growth rate for sinuous perturba-

tions at moderate wavenumbers, k ∼ O(1). The plane Poiseuille flow

has also been analyzed for interfacial instability when multiple lay-

ers of fluid are superposed [19–21]. These analyses address the role

of simultaneous viscosity and elasticity stratification coupled with

the effect of thickness ratio of fluid layers and various arrangements

for stable interface have been proposed. In earlier analyses of plane

Poiseuille flow, the attention is restricted to fixed values of elasticity

stratification and analyses have been carried out for limited values of

flow Weissenberg numbers focusing mainly on varying viscosity and

layer thickness ratios. Moreover, the Couette–Poiseuille flow with ad-

verse pressure gradient has not been studied. In the present study,

we analyze the plate-driven flow superposed with pressure gradient

to address the interfacial instability excited within the coating cup in

the fiber coating process. The two-layer fluids are considered as the

UCM fluids, suitable to describe the polymer melt and highly con-

centrated polymeric solutions. The numerical analysis examines the

disturbance with any arbitrary wavelength and constructs stability

diagram in W1 − W2 plane covering a range of fluids with varying ex-

tent of elasticity stratification.

2. Problem formulation

The system consists of two superposed viscoelastic fluids with vis-

cosities η1 and η2, relaxation times λ1 and λ2, confined between two

flat plates separated by distance L. While the bottom plate at y = 0 is

held stationary, the top plate, at y = L, moves with a constant velocity

V in the positive x-direction. The parameter δ indicates the fraction of

channel width occupied by the bottom fluid (referred to as fluid 2);

thus (1 − δ) is the fraction of channel width occupied by the top fluid

(fluid 1). The densities of both fluids are assumed to be the same.

The co-ordinate system and the schematic of the flow geometry is

shown in Fig. 1. We consider the plane Couette flow with zero pres-

sure gradient [Fig. 1(a)] as well as the Couette–Poiseuille flow with

an adverse pressure gradient [Fig. 1(b)] and a favorable pressure gra-

dient [Fig. 1(c)]. The emphasis of the study is on the role of non-zero

pressure gradient in the interfacial instability. In the present analysis,

the quantities are made dimensionless as follows: distance by L, ve-

locities by V, time by L/V, pressure and viscoelastic stresses by η2V/L.

The flow is assumed to be creeping flow owing to high viscosities of

the viscoelastic fluids.

The dimensionless continuity and momentum conservation equa-

tions for the inertia-less flow are:

∇ · v(α) = 0, (1)

−∇p(α) + ∇ · τ(α) = 0. (2)

Here, α denotes the index for the fluid: α = 1 for the top fluid and

α = 2 for the bottom fluid. The dynamics of the viscoelastic fluid is

described with the help of upper convected Maxwell (UCM) model:

Wα[∂tτ
(α) + v(α) · ∇τ(α) − τ(α) · ∇va − (∇v(α))T · τ(α)] + τ(α)

= mα[∇v(α) + (∇v(α))T ], (3)

where superscript T indicates the transpose and mα = ηα/η2, the vis-

cosity of fluid ‘α’ made non-dimensionalized by bottom fluid vis-

cosity η2. The Weissenberg number for fluid ‘α’, an indicative of its

elasticity, is defined as Wα = λαV/L, where λ is the relaxation time of

the polymeric fluid.
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