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A B S T R A C T

The free-edge effects and relative layer shifting in the interlaminar and intralaminar stresses of plain woven
composite laminates under uniaxial extension is investigated numerically using a finite element approach. A
computational framework of the free-edge problem for periodic structures with finite width is applied to woven
laminates. First, two-layered laminates with three different shifting configurations are studied considering re-
peating unit cells simulating finite and infinite width. For each configuration, two different widths are con-
sidered by trimming the model at different locations in order to investigate different free-edge effects. Then, two
four-layered laminates with no shifting and a maximum shifting configuration are analyzed to illustrate the
effect of neighboring layers in the stresses. For each shifting configuration, different delamination mechanisms
are expected. When considering more layers, it is found that the stacking configuration affects the state of stress
and the free-edge effects depending on the shifting. In general, a different behavior than that of unidirectional
tape laminates is found, since the interlaminar and intralaminar stresses can be higher than those generated at
the free-edges. Particularly, for the maximum shifting configuration results are in agreement with experimental
results in the literature where no debonding between yarns was observed at the free-edges.

1. Introduction

Fiber reinforced woven composites are commonly used in structural
applications with complex geometries offering low production costs in
comparison to unidirectional tape laminates. However, their use has
been restricted by the lack of understanding of their structural integrity,
quantifying its damage and predicting its evolution [1]. Delamination
as a result of interlaminar stresses is a common failure mechanism [2,3]
which is typically triggered at the free-edges when composite tape la-
minates are under uniaxial extension. Among the first observations and
solutions of free-edge effects were those made by [4,5] in unidirectional
tape laminates, which later motivated numerous investigations [6–10].
It is well accepted that the interlaminar stresses arise due to the mis-
match between adjacent layers and cannot be captured with classical
laminate theory, but numerical solutions are required instead [8–10].

The free-edge effects in woven composites have not been thoroughly
discussed in the literature and when performing experimental testing
under uniaxial extension it is typically assumed that the maximum
stresses are generated at the free-edges, assuming a similar behavior as
in unidirectional tape laminates [11–13]. To the best of our knowledge,
the only work that has studied free-edge effects in woven composites
has been Owens et al. [14]. They studied the effect of finite thickness

and finite width on four-layered woven laminates with different wavi-
ness ratios (WR= th/λ) for a given thickness, th, and a wave length, λ.
Their results suggested that for low values of WR, free-edge effects were
more pronounced, but in both cases, different than in tape laminates.

The relative layer shifting between layers has been shown to have
an important effect in woven composites. Ito and Chou [12] studied
layer shifting experimentally testing laminates with no-shifting, max-
imum shifting and random shifting configurations under uniaxial ten-
sion. They found delamination or debonding between fiber bundles in
the free-edges, in turn related with the strength of the laminate
[11,12,15] except for the maximum shifting configuration. Among
other things, layer shifting can also reduce the interlaminar shear stress
between neighboring laminas [12,16] and affects the macroscopic
strain field [17]. Therefore, it has been suggested that in order to
capture the physics of the failure process, shifting should be considered
when performing simulations [18]. However, it is worth to mention
that other geometrical imperfections due to manufacturing might arise,
such as nonuniform distribution of undulation angle, variability of layer
thickness, and voids, to mention a few, which could lead to more
complex representative volume elements, see e.g. [19,20]. All these
imperfections may also influence the stress distribution within the la-
minate and should be taken into account in later studies.

https://doi.org/10.1016/j.compstruct.2017.11.014
Received 30 June 2017; Received in revised form 9 October 2017; Accepted 6 November 2017

⁎ Corresponding author.
E-mail address: juanjose.espadas@angstrom.uu.se (J.J. Espadas-Escalante).

Composite Structures 185 (2018) 212–220

Available online 07 November 2017
0263-8223/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2017.11.014
https://doi.org/10.1016/j.compstruct.2017.11.014
mailto:juanjose.espadas@angstrom.uu.se
https://doi.org/10.1016/j.compstruct.2017.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2017.11.014&domain=pdf


The present investigation focuses on the relative layer shifting and
its effect on the intralaminar stresses responsible for yarn debonding in
the same layer, interlaminar stresses responsible for yarn debonding
between layers and free-edge effects in plain woven composite lami-
nates. First, the effect of relative layer shifting between layers is dis-
cussed in a two-layered plain woven composite. The free-edge effect is
studied by representing a specimen with finite width, with appropriate
boundary conditions, as it will be described later. Afterwards, these two
layers are considered as a part of a four-layered laminate under two
different shifting arrangements in order to study the effect of neigh-
boring layers.

2. The free-edges as a boundary value problem

2.1. A brief introduction

The so-called free-edge effects were first observed and reported by
Pagano and Pipes [4] in tape laminates subjected to uniaxial extension.
This effect arises near the free-edges due to stress imbalances and the
local Poisson’s ratio mismatch between layers. As an example, consider
a [0/90]s laminate as that shown in Fig. 1a with length L, width <b L2
and total laminate thickness ≪t b2l that is subjected to a macroscopic
uniaxial extension in the x-direction. At the free-edges ( =y 0 and

=y b2 ), the macroscopic surface traction is zero ( =t 0). On the other
hand, plane-stress conditions prevail at the interior of the laminate
where in-plane stresses might differ between layers due to the different
ply orientations and stacking order. Thus, in order to satisfy equilibrium
and the macroscopic traction-free conditions at the free-edges, high out-
of-plane interlaminar stresses arise at these zones vanishing at a dis-
tance of approximately tl according to the Saint–Venant principle [21].
Then, free-edges become common places for triggering delamination,
see [4] for further details and a complete study. It is worth to mention
that benchmark models capturing these free-edge effects were first
implemented in a [0/90]s laminate finding agreement with the well-
known solutions presented by Nguyen et al. and Wang et al. [10,22],
Fig. 1b.

2.2. A computational approach of the free-edge problem

The aforementioned free-edge problem can be written as a
boundary value problem in the absence of body forces as,

=σ· 0 on ΩM (1a)

= =t σ n 0· on ΓM y edge (1b)

= =t σ n 0· on ΓM z bt (1c)

=u u on Γp p (1d)

where ∇ is the gradient operator, σM is the macroscopic Cauchy stress

tensor in Voigt notation, ni is the outwards normal to each surface in
the i-direction, being = ui x y, , are the displacements, up are the pre-
scribed displacements, Ω is the domain and Γ the union of sub-
boundary regions with subscripts edge p, and bt referring to the lateral
free-edges, prescribed displacements, and bottom-top boundaries, re-
spectively. The weak solution of the boundary value problem denoted
by Eqs. ((1)) is obtained by finding the displacements u such that,
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where = ⊗ ∇E uM is the average Cauchy infinitesimal strain tensor on
the macroscale, and = ⊗ ∇E uδ δM holds. (Ω)1� is the Sobolev space of
order m, and Eq. (2) is discretized using the standard Galerkin method.
The Dirichlet boundary conditions up can be prescribed as displace-
ments on the macroscale, which in turn, can be related to the macro-
scopic strain EM and a micro-fluctuation displacement part ∼u related to
the periodicity. Details are provided in the following section.

2.3. Boundary conditions, periodicity and free-edges in periodic structures

Free-edge effects in woven composites have been suggested to be
different than those presented in unidirectional tape laminates due to
the complex state of stress that arises as a result of the undulation of the
yarns [14]. Furthermore, woven composites are periodic structures and
modeling its behavior is typically done using homogenization theory
with a repeating unit cell (RUC) on the microscale together with the
representation of periodicity of displacement, related to the average
macroscopic strain EM . It is known that for periodic structures with a
given boundary Γ, periodic boundary conditions in the appropriate
directions can be written in terms of the micro-fluctuation displacement
∼u as,

= =∼ ∼ ∼+ + − −u u X u X( ) ( ) (3)

where the superscripts + and − represent opposite boundaries on Γ and
X are the reference coordinates. Periodicity in the z-direction is not
considered since the exact number of laminas is used [23,24]. Thus, if
periodicity is considered simultaneously in the x-y-directions, an in-
finite length and infinite width is being represented and if periodicity is
only considered in the x-direction, infinite length and finite width is
being represented. Notice that when finite width is considered, the
nodal constraints in the y-direction (free-edges) are released and the
traction t vanishes on the free edges,

= =t σ n 0· on ΓM y edge (4)

In contrast, it does not vanish when periodicity in such boundary is
prescribed. Thus, we study the free-edge effects in this periodic struc-
ture by comparing these two cases. This physical representation of the
free-edge effect is shown schematically in Fig. 2. In order to impose

Fig. 1. Example of a typical free-edge effect in a [0/90]s tape
laminate under uniaxial extension. a) Schematic re-
presentation, b) benchmark of the results herein compared
to the solutions of Nguyen et al. [10] and Wang et al. [22].
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